Математические модели в экономике
Математическое моделирование позволяет принять оптимальное, то есть наилучшее решение. Оно может незначительно отличаться от грамотно принятого решения без применения математического моделирования (около 3%). Однако при больших объемах производства такая "незначительная" ошибка может привести к огромным потерям.
Математические методы, применяемые для анализа математической модели
и принятия оптимального решения, весьма сложны и их реализация без применения ЭВМ затруднительна. В составе программ Excel и Mathcad имеются средства, позволяющие провести математический анализ и найти оптимальное решение.
Часть № 1 "Исследование математической модели"
Постановка задачи.
На предприятии имеется возможность выпуска продукции 4-х видов. Для выпуска единицы продукции каждого вида необходимо затратить определенное количество трудовых, финансовых, сырьевых ресурсов. В наличии имеется ограниченное количество каждого ресурса. Реализация единицы продукции приносит прибыль. Значения параметров приведены в таблице 1. Дополнительное условие: финансовые затраты на производство продукций №2 и №4 не должны превышать 50р. (каждого вида).
На основе математического моделирования средствами Excel определить, какую продукцию и в каких количествах целесообразно произвести с точки зрения получения наибольшей прибыли, проанализировать результаты, ответить на вопросы, сделать выводы.
Таблица 1.
Количество ресурсов, необходимое для производства единицы продукции |
Наличие ресурсов | ||||
Продукция №1 |
Продукция №2 |
Продукция №3 |
Продукция №4 | ||
Трудозатраты |
1,1 |
2,3 |
1,6 |
1,8 |
1000 |
Финансы |
0,63 |
0,1 |
1 |
1,7 |
400 |
Сырье |
1,8 |
1,4 |
1 |
0,15 |
800 |
Прибыль (на единицу продукции) |
1,7 |
2,3 |
2 |
5 |
- |
Составление математической модели
Целевая функция (ЦФ).
Целевая функция показывает, в каком смысле решение задачи должно быть наилучшим (оптимальным). В нашей задаче ЦФ:
Прибыль → max.
Значение прибыли можно определить по формуле:
Прибыль = кол1 ∙ пр1 + кол2 ∙ пр2 + кол3 ∙ пр3 + кол4 ∙ пр4,где кол1,…, кол4 –
количества выпущенной продукции каждого вида;
пр1,…, пр4 - прибыли, получаемые от реализации единицы каждого вида продукции. Подставив значения пр1,…, пр4 (из табл.1) получим:
ЦФ: 1,7 ∙ кол1 + 2,3 ∙ кол2 + 2 ∙ кол3 + 5 ∙ кол4 → max (1)
Ограничения (ОГР).
Ограничения устанавливают зависимости между переменными. В нашей задаче ограничения накладываются на использование ресурсов, количества которых ограничены. Количество сырья, которое необходимо для производства всей продукции, можно подсчитать по формуле:
Сырьё = с1 ∙ кол1 + с2 ∙ кол2 + с3 ∙ кол3 + с4 ∙ кол4,где с1,…, с4 –
количества сырья, необходимые для выпуска единицы каждого вида продукции. Общее количество использованного сырья не может превышать имеющего в наличии ресурса. Подставив значения из табл.1, получим первое ограничение - по сырью:
1,8 ∙ кол1 + 1,4 ∙ кол2 + 1 ∙ кол3 + 0,15 ∙ кол4 ≤ 800 (2)
Аналогично запишем ограничения по финансам и трудозатратам:
0,63 ∙ кол1 + 0,1 ∙ кол2 + 1 ∙ кол3 + 1,7 ∙ кол4 ≤ 400 (3)
1,1 ∙ кол1 + 2,3 ∙ кол2 + 1,6 ∙ кол3 + 1,8 ∙ кол4 ≤ 1000 (4)
Граничные условия (ГРУ).
Граничные условия показывают, в каких пределах могут изменяться искомые переменные. В нашей задаче это финансовые затраты на производство продукций №2 и №4 согласно условию:
0,1 ∙ кол2 ≤ 50 р.; 1,7 ∙ кол4 ≤ 50 р. (5)
С другой стороны мы должны ввести, что количество продукции должно быть больше или равно нулю. Это очевидное для нас, но необходимое компьютеру условие:
кол1 ≥ 0; кол2 ≥ 0; кол3 ≥ 0; кол4 ≥ 0. (6)
Поскольку все искомые переменные (кол1,…, кол4) входят в соотношение 1-7 в первой степени и над ними производятся только действия суммирования и умножения на постоянные коэффициенты, то модель является линейной.
Решение задачи на компьютере.
Включаем компьютер. Перед входом в сеть задаем имя пользователя ZA, с паролем А. Загружаем программу Excel. Сохраняем файл под именем Лидовицкий Кулик. хls. в папке Эк/к 31 (2). Создаем верхний колонтитул: слева - дата, в центре имя файла, справа имя листа.
Создаем и форматируем заголовок и таблицу исходных данных (таблица 1). Заносим в таблицу данные согласно варианту задачи.
Создаем и форматируем таблицу для расчета. В ячейки "Количество" заносим начальные значения. Их выбираем близкими к ожидаемому результату. Мы не имеем предварительной информации и поэтому выберем их равными 1. Это позволит легко проконтролировать вводимые формулы.
В строку "Трудозатраты" вносим слагаемые формулы (4) - произведения количества продукции на количество трудозатрат, необходимые для производства единицы продукции:
для продукции №1 (=С15*С8);
продукции №2 (=D15*D8);
продукции №3 (=E15*E8);
продукции №4 (=F15*F8).
В графе “ИТОГО” находим сумму содержимого этих ячеек при помощи кнопки автосуммирования Σ. В графе “Остаток” находим разницу между содержимым ячеек “Ресурс-Трудозатраты” таблицы 1 и “ИТОГО-Трудозатраты" (=G8-G17). Аналогично заполняем графы "Финансы" (=G9-G18) и "Сырье" (=G10-G19).
В ячейке “Прибыль” вычисляем прибыль по левой части формулы (1). При этом воспользуемся функцией =СУММПРОИЗВЕД (С15: F15; C11: F11).
Присваиваем ячейкам, содержащим итоговые прибыль, финансовые, трудовые и сырьевые затраты, а также количества продукции, имена, соответственно: "Прибыль", "Финансы", "Трудозатраты", "Сырье", "Пр1", "Пр2", "Пр3", "Пр4". Excel включит эти имена в отчеты.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели