Математические модели в экономике

После выпуска продукции все ресурсы будут истрачены полностью.

Структура найденного решения наиболее сильно зависит от реализации единицы продукции №1 и №3, а также от уменьшения или увеличения всех имеющихся ресурсов.

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Теоретические положения.

Балансовый метод - метод взаимного со

поставления финансовых, материальных и трудовых ресурсов и потребностям в них. Балансовая модель экономической системы - это система уравнений, удовлетворяющих требованиям соответствия наличия ресурса и его использования.

Межотраслевой баланс отражает производство и распределение продукта в отраслевом разрезе, в межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Схема межотраслевого баланса.

Производящие отрасли

Потребляющие отрасли

Конечный продукт

Валовый продукт

1 2 3 . j . n

1

2

3

.

.

.

i

.

.

.

n

X11 X12 X13 . X1j … X1n

X21 X22 X23 . X2j . X2n

X31 X32 X33 . X3j . X3n

. .

.I. .

. .

Xi1 Xi2 Xi3 . Xij . Xin

. .

. .

. .

Xn1 Xn2 Xn3 . Xnj . Xnn

Y1

Y2

Y3

.

II

.

Yi

.

.

.

Yn

X1

X2

X3

.

.

.

Xi

.

.

.

Xn

Амортизация

Оплата труда

Чистый доход

Валовый продукт

C1 C2 C3 Cn

U1 U2 U3 III Un

m1 m2 m3 mn

X1 X2 X3 Xn

IV

Каждая отрасль в балансе является и потребляющей и производящей. Выделяют 4 области баланса (квадранты) имеющих экономическое содержание:

таблица межотраслевых материальных связей, здесь Xij - величины межотраслевых потоков продукции, т.е. стоимость средств производства произведенных в i отрасли и потребных в качестве материальных затрат в j отрасли.

Конечная продукция - это продукция выходящая из сферы производства в область потребления, накопления, на экспорт и т.д.

Условно чистая продукция Zj - это сумма амортизации Cj и чистой продукции (Uj + mj).

Отражает конечное распределение и использование национального дохода. Столбец и строка валовой продукции используется для проверки баланса и составления экономико-математической модели.

Итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:

(1)

Валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

(2)

Просуммируем по всем отраслям уравнения 1:

Аналогично для уравнения 2:

Левая часть это валовый продукт, тогда и правые части приравниваем:

(3)

Постановка задачи.

Имеется четырехотраслевая экономическая система. Определить коэффициенты полных материальных затрат на основе данных: матрица коэффициентов прямых материальных затрат и вектор валовой продукции (табл.2).

Таблица 2.

Матрица коэффициентов прямых материальных затрат

Вектор валовой продукции

0,042 0,016 0,016 0,078

0,078 0,078 0,016 0,124

0,016 0,042 0,18 0

0 0,078 0,016 0,042

138

697

282

218

Составление балансовой модели.

Основой экономико-математической модели межотраслевого баланса являются матрицы коэффициентов прямых материальных затрат:

(4)

Коэффициент прямых материальных затрат показывает какое количество продукции i отрасли необходимо, если учитывать только прямые затраты для производства единицы продукции j отрасли.

Учитывая выражение 4, выражение 2 можно переписать:

(5)

- вектор валовой продукции.

- вектор конечной продукции.

Матрицу коэффициентов прямых материальных затрат обозначим:

Тогда система уравнений 5 в матричной форме:

(6)

Последнее выражение это модель межотраслевого баланса или модель Леонтьева. При помощи модели можно:

Задав величины валовой продукции Х определить объемы конечной продукции Y:

(7)

где Е - единичная матрица.

Задав величины конечной продукции Y определить значение валовой продукции Х:

(8)

обозначим через В величину (Е-А) - 1, т.е.

,

то элементы матрицы В будут .

Для каждой i отрасли:

- это коэффициенты полных материальных затрат, показывают какое количество продукции i отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j отрасли.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы