Математические методы в решении экономических задач
На пересечении разрешающего столбца и строки находится разрешающий элемент - это число 23/7. Производим пересчет всех коэффициентов таблицы, таким образом , чтоб на месте разрешающего элемента получить 1, а в разрешающем столбце все элементы = 0.
Для этого: 1) Третью строку разделим на и запишем получившееся в эту же строку.
2) Из первой строки вычтем вторую, умноженную на и записываем в первую строку.
3) Из третьей строки вычтем вторую умноженную на , результат запишем в третью строку.
4) К строке F прибавим вторую строку умноженную на 23 и запишем в строку F.
Таблица (2.3)
Базисные переменные |
Свободные переменные |
1 |
2 |
3 |
4 |
5 | |
Х1 |
Х2 |
Х3 |
Х4 |
Х5 | |||
1 |
Х3 |
213 |
0 |
0 |
1 |
-33/23 |
119/161 |
2 |
Х1 |
63 |
1 |
0 |
0 |
7/23 |
-5/23 |
3 |
Х2 |
111 |
0 |
1 |
0 |
-1/23 |
28/161 |
4 |
F |
7329 |
0 |
0 |
0 |
7 |
2 |
Ответ: из изложенного выше экономического содержания данных таблицы (2.3) следует, что на втором шаге план задачи является оптимальным. Х1* = 63; Х2* = 111. Fmаx= 7329, это значит, что общая стоимость всей произведенной продукции, а она равна 7329 рублей, является максимальной
Решение задачи двойственным методом
Под двойственной задачей понимается вспомогательная задача линейного программирования, формулируемая с помощью определённых правил непосредственно из условий прямой задачи. Заинтересованность в определении оптимального решения прямой задачи путём решения двойственной к ней задачи обусловлена тем, что вычисления при решении ДЗ могут оказаться менее сложными. Трудоёмкость вычислений при решении ЗЛП в большей степени зависит от числа ограничений, а не от количества переменных.
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу линейного программирования, называемую двойственной или сопряженной по отношению к исходной или прямой.
5Х1+2Х2 ≤ 750 Y1
|
Х1+7Х2 ≤ 840 Y3
F = 30Х₁ +49Х₂ => max
Целевая функция исходной задачи задаётся на максимум, а целевая функция двойственной – на минимум.
Составим матрицу для исходной задачи:
А =
Чтобы составить матрицу для двойственной задачи нужно применить транспонирование (т.е. замена строк – столбцами, а столбцов – стоками)
АТ =
Число переменных в двойственной задаче равно числу соотношений в системе (1.1) исходной задачи, т.е. равно трем.
Коэффициентами в целевой функции двойственной задачи являются свободные члены системы уравнений, т .е 750,807,840.
Целевая функция исходной задачи исследуется на максимум, а система условий содержит только уравнения. Поэтому в двойственной задаче целевая функция исследуется на минимум, а её переменные могут принимать любые значения (в том числе и отрицательные). Следовательно, для исходной задачи двойственная задача такова: умножим правые части ограничений на соответствующие переменные двойственной задачи и сложим их, получим целевую функции
Z(Y) = 750Y1 + 807Y2 + 840Y3 => min.
5Y1 + 4Y2 + Y3 ≥ 30
2Y1 + 5Y2 + 7Y3 ≥ 49
Y1 = 0
Y2 = 7
Y3 = 2
Z(Y) = 750·0 + 807·7+ 840·2 = 7329
Ответ: Z(Y) = F(Х) = 7329, Y1* = 0, Y2* = 7, Y3* = 2.
Транспортная задача линейного программирования
Под названием «транспортная задача» объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.
Задача №2
Формулировка транспортной задачи
На три базы: А₁, А₂, А₃ поступил однородный груз в количествах: а₁, а₂, а₃, соответственно. Груз требуется перевезти в пять пунктов: b₁ в пункт В₁, b₂ в пункт В₂, b₃ в пункт В₃, b₄ в пункт В₄, b₅ в пункт В₅.
Спланировать перевозки так, чтобы общая их стоимость была минимальной. Матрица тарифов сij перевозок между пунктами отправления и пунктами назначения, а также запасы и потребности представлены ниже:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели