Доверительный интервал. Проверка статистических гипотез
Пользуясь таблицей значений интеграла
по значению b найдем величину а следовательно, и сам доверительный интервал le =
2. Проверка статистических гипотез
Принятие решения о параметрах генеральной совокупности играет исключительно важную роль на практике. Рассмотрим вопрос о принятии решения на примере. Пусть фирма, выпускающая конденсаторы, утверждает, что среднее пробивное напряжение конденсаторов равно или превышает 300 В. Испытав 100 конденсаторов, мы получили, что среднее выборочное пробивное напряжение равно 290 В, а несмещенное выборочное среднее квадратичное отклонение sn = 40 В. Можно ли с доверительной вероятностью 0,99 утверждать, что среднее пробивное напряжение превышает 300 В.
Здесь нас интересует односторонняя оценка – среднее пробивное напряжение должно превышать 300 В.
Выскажем статистическую гипотезу – генеральное среднее mx = 300 В, а затем проверим, соответствует ли она результатам наблюдения. Поскольку объем выборки больше 30, то выборочное среднее можно считать гауссовской случайной величиной с генеральной дисперсией s2 » sn2. Введем центрированную и нормированную величину
Утверждение о том, что среднее выборочное напряжение эквивалентно утверждению, что случайная величина
Найдем вероятность того, что гауссовская случайная величина Z с mz = 0 и sz = 1 принимает значения больше zo:
Эта величина должна равняться доверительной вероятности 0,99. Тогда и по таблицам значений функции находим аргумент zo = -2,33. Вычислим теперь наблюдаемое значение случайной величины Z:
Мы видим, что наблюдаемое значение z = - 2,5 нe принадлежит интервалу [-2,33;¥), поэтому гипотезу нужно отвергнуть.
Приведем пример гипотезы с двухсторонней оценкой. Пусть фирма, выпускающая стабилитроны определенного типа, утверждает, что номинальное напряжение стабилизации стабилитронов равно 10 В. Естественно, что отклонение напряжения стабилизации в меньшую или большую стороны одинаково нежелательно. Выдвинем гипотезу, что генеральное среднее напряжение стабилизации равно 10 В, а затем проверим эту статистическую гипотезу по результатам наблюдения.
Пусть при испытании 100 стабилитронов среднее выборочное равно 10,3 В, а несмещенное выборочное среднее квадратичное отклонение равно 1,2 В. Можно ли с доверительной вероятностью 0,95 считать выдвинутую гипотезу справедливой? Так как объем выборки больше 30, то можно, как и в предыдущем примере, ввести гауссовскую случайную величину Z. Найдем
и приравняем правую часть полученного соотношения 0,95. Тогда и zo =1,96. Это значит, что наблюдаемое значение z должно принадлежать интервалу (-1,96; 1,96). Поскольку не попадает в указанный интервал, то гипотеза отвергается.
Если объем выборки n < 30, то случайная величина cчитается стьюденской случайной величиной T. Поэтому повторяя все указанные выше выкладки для проверки статистических гипотез, значения аргумента ищутся для распределения Стьюдента. При этом, так как "хвосты" стьюденского распределения по отношению к гауссовским удлиняются, доверительные интервалы расширяются, а возможности принятия гипотез улучшаются.
3. Функция риска
доверительный интервал вероятность статистическая гипотеза
Пусть имеются две противоположные гипотезы Но и Н1 и некоторая связанная с ними случайная величина Y. И пусть у - значение случайной величины Y, полученное в результате испытаний, которое принадлежит множеству D - множество всех значений случайной величины Y. Требуется провести проверку гипотезы Но относительно конкурирующей гипотезы Н1 на основании результатов испытания.
Разобьем множество D на две части - Dо и D1 с условием принятия гипотезы Но при попадании полученного значения у в Dо и гипотезы Н1 - при попадании у в D1. Выбор решающего правила, то есть разбиение множества D на две части Dо и D1 в любой задаче проверки гипотез возможен больше, чем одним способом. Возникает вопрос, какое из этих разбиений в каждой конкретной задаче считать наилучшим? Чтобы решить поставленную задачу нужно обладать некоторой дополнительной информацией. Такая информация носит название априорной.
Будем считать известными два условных распределения вероятностей случайной величины Y:
- плотность распределения случайной величині Y при условии, что верна гипотеза Но;
- плотность распределения случайной величині Y при условии, что верна гипотеза Н1;
Кроме того нам потребуется априорная вероятность р того, что гипотеза Но имеет место.
Введем в рассмотрение события:
А – верна гипотеза Но, тогда р = р(А);
– верна конкурирующая гипотеза Н1, тогда р() = 1 - р;
В – в результате эксперимента значение у попало в интервал Dо;
– в результате эксперимента значение у попало в интервал D1.
Тогда по результатам эксперимента возможны только четыре события:
АВ – верна гипотеза Но и принято решение о ее истинности;
В – верна гипотеза Н1, а принято решение о истинности гипотезы Но;
А– верна гипотеза Но, а принято решение о истинности гипотезы Н1;
– верна гипотеза Н1 и принято решение о ее истинности.
Ясно, что события В и Аопределяют ошибочные решения. Событию В соответствует так называемая ошибка первого рода, а событию А- ошибка второго рода.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели