Доверительный интервал. Проверка статистических гипотез

Для ответа на вопрос, какое из решающих правил следует считать лучшим, введем понятие функции потерь и функцию риска.

Функция потерь – дискретная случайная величина С, которая каждому из событий АВ, В, А, ставит в соответствие потери , выраженные в каких-то единицах. Правильному решению естественно положить нулевые потери, а ошибкам первого и второго ряда положить соответственно положительные потери (числа) С1 и С2, которые нужно задать.

Пусть ро = р(АВ или ), р1 = р(В), р2 = р(А). Определение значений этих вероятностей будет проведено ниже. Ряд распределения для случайной величины С имеет вид

С

0

с1

с2

р

ро

р1

р2

Определение. Математическое ожидание М(С) случайной величины С называется функцией риска и обозначается буквой r.

Таким образом, r = М(С) = 0 ро + с1 р1 + с2 р2 = с1 р1 + с2 р2.

Введение функции риска приводит к естественному выбору решающего правила. Из двух правил лучшим считается то, которое приводит к меньшему риску. Для нахождения минимума функции риска найдем вероятности р1 и р2:

Тогда

Для того, чтобы интеграл был минимальным, а значит и минимальное значение принимала функция риска r, нужно в состав Dо включить только те у, в которых подыинтегральная функция

С1 (1-р) f1(y) – p C2 fo(y) < 0,

а в состав D1- остальные значения у.

Последнее неравенство можно записать в виде

Функция f1(y)/fo(y) называется отношением правдоподобия.

Итак, оптимальное решающее правило заключается в следующем: полученное в результате эксперимента значение у подставляется в отношение правдоподобия f1(y)/fo(y) и сравнивается с числом

l =

если полученное в результате вычисления число f1(y)/fo(y) меньше l, принимается гипотеза Но; в противном случае – гипотеза Н1.

Величина l носит название порога, а оптимальное решающее правило носит название порогового критерия оптимальности.

Размещено на http://www.allbest.ru/

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы