Доверительный интервал. Проверка статистических гипотез
1. Доверительный интервал
Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра. Однако оценка является приближенным значением параметра генеральной совокупности, которая при разных выборках одного и того же объема будет принимать разные значения, поэтому в ряде задач требуется найти не тольк
о подходящее значение параметра а, но и определить его точность и надежность.
Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность. Пусть для параметра а из опытных данных получена несмещенная оценка Требуется определить возможную при этом величину ошибки и вероятность того, что оценка не выскочит за пределы этой ошибки (надежность).
Зададимся некоторой вероятностью b (например, b = 0,99) и найдем такое значение e > 0, для которого
Представим это выражение в виде
Это значит, что с вероятностью b точное значение параметра а находится в интервале le
le
Здесь параметр а – неслучайная величина, а интервал le является случайным, так как - случайная величина. Поэтому вероятность b лучше толковать, как вероятность того, что случайный интервал le накроет точку а. Интервал le называют доверительным интервалом, а вероятность b - доверительной вероятностью (надежностью).
Пример. Если при измерении какой-то величины Х указывается абсолютная погрешность Dх, то это, по существу, означает, что погрешность измерения, являясь случайной величиной, равномерно распределена в интервале (-Dх, Dх) и где Х* - измеренная величина, а х – ее точное значение. Здесь b = 1, e = Dх и le = (x*- Dх, x* + Dх).
1.1 Доверительный интервал для математического ожидания
В качестве еще одного примера рассмотрим задачу о доверительном интервале для математического ожидания. Пусть проведено n независимых опытов измерения случайной величины Х с неизвестным математическим ожиданием mx и дисперсией s2. На основании опытных данных Х1, Х2, . , Хn построим выборочные оценки
Требуется построить (найти) доверительный интервал le, соответствующий доверительной вероятности b, для среднего генерального mx.
Так как среднее выборочное представляет сумму n независимых одинаково распределенных случайных величин то при достаточно большом объеме выборки согласно центральной предельной теоремы ее закон близок к нормальному. Существует эмпирическое правило, по которому при объеме выборки n ³ 30 выборочное распределение можем считать нормальным.
Ранее было показано, что Найдем теперь такую величину e(b) > 0, для которой выполняется равенство
Считая случайную величину нормально распределенной, имеем
После замены имеем
По табличным значениям функции Лапласа Ф*(z) находим аргумент, при котором она равна b. Если этот аргумент обозначить Zb, то тогда
Среднее квадратичное значение приближенно можно заменить
где
Таким образом, доверительный интервал для среднего генерального равен:
le =
Если пользоваться табличными значениями интеграла вероятностей
то доверительный интервал принимает вид
le =
1.2 Распределение Стьюдента
При малом объеме выборки (n < 30) полученный доверительный интервал для среднего генерального, использующий нормальное распределение случайной величины , может быть очень грубым.
Для более точного получения доверительного интервала необходимо знать закон распределения случайной величины при малом объеме выборки. Для этого воспользуемся следующим результатом. Пусть Х1, Х2, . , Хn – выборка нормально распределенной случайной величины Х, тогда, как доказано, случайная величина
подчиняется распределению Стьюдента c n – 1 степенью свободы, плотность распределения которого имеет вид
где - гамма функция. Эта плотность, как видно из формулы, зависит только от числа опытов n. Ниже представлены графики плотностей нормированной (mx = 0, s = 1) нормально распределенной и с распределением Стьюдента (n = 4) случайных величин.
|
|
0,3
0,2
0,1
-4 -3 -2 -1 1 2 3 4 t
На основании найденных можно, пользуясь распределением Стьюдента, найти доверительный интервал для mx , соответствующий доверительной вероятности b. Действительно, так как то
Другие рефераты на тему «Экономико-математическое моделирование»:
- Практическое применение теории игр
- Использование критерия Дарбина–Уотсона и оценка качества эконометрической модели с использованием коэффициента детерминации
- Эконометрическое моделирование
- Разработка модели предприятия тепличного хозяйства, используя методологии проектирования IDEF0, DFD и IDEF3
- Рекурсия
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели