Математические модели в экономике
Задание 1
В пространстве трех товаров рассмотрите бюджетное множество при векторе цен P и доходе Q. Описать его и его границу с помощью обычных и векторных неравенств и равенств, изобразите бюджетное множество и его границу графически. В ответ дать число, равное объему бюджетного множества.
valign=top >
Вариант |
1 |
Данные |
P = (1,3,4) Q = 24 |
|
|
|
|
|
|
|
|
Цена товара , товара, товара и бюджетное множество есть пирамида ОАВС. Точка А имеет координату , точка В имеет координату , точка С имеет координату .
Бюджетное множество B(P,Q) и его граница G(P,Q) зависят от цен и дохода.
Бюджетное множество и его границу можно определить с помощью обычных неравенств и равенств так:
и с помощью векторных равенств и неравенств
Объем бюджетного множества равен объему построенной пирамиды ОАВС.
Объему пирамиды ОАВС равен одной трети произведения площади основания на высоту:
где S – площадь основания, H – высота пирамиды.
В рассматриваемом случае высота Н равна 24.
Площадь основания равна ½ АВ умножить на ВС и на синус угла между ними.
Задание 2
Даны зависимости спроса D и предложения S от цены. Найдите равновесную цену, при которой выручка максимальна и эту максимальную выручку.
Вариант |
Данные |
1 |
D = 1000 – 10p; S = 100 +10p |
Решение:
Точка равновесия характеризуется равенством спрос и предложения, т.е. 1000 – 10p = 100+10p. Равновесная цена p* = 45 и выручка при равновесной цене W(p*) = p* * D(p*) = p* * S(p*) = 24750.
При цене p > p* объем продаж и выручка определяется функцией спроса, при p < p* - предложения. Необходимо найти цену , определяющую максимум выручки:
p*(1000 – 10p) – функция имеет максимум в точке 50, W(50)=25000
p*(100 - 10p) –функция максимальна в точке 5, W(5)=250
Таким образом, максимальная выручка W(р) =25000 достигается не при равновесной цене.
Задание 3
Найдите решение матричной игры (оптимальные стратегии и цену игры).
Вариант |
Игра |
1 |
|
Сначала необходимо проверить наличие седловой точки. Седловой точки нет.
Обозначим стратегию Первого , искомую оптимальную стратегию Второго .
Выигрыш Первого есть случайная величина с таким рядом распределения:
W(x,y): |
2 |
-3 |
-2 |
2 |
xy |
x(1-y) |
(1-x)y |
(1-x) (1-y) |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели