Гипергеометрическое уравнение

={(+k-1)-( -1

)-k} zk=

= {+k----k} zk=0.

Повторное применение рекуррентных формул приводит к линейным соотношениям, связывающим функцию F(,,z) с родственными функциями F(+m,+n,z), где m,n- заданные целые числа. Примерами подобных соотношений могут служить равенства:

F(,,z) = F(+1,,z)- F(+1,+1,z) (4.12)

F(,,z)= F(,+1,z) + F(+1,+1,z) (4.13)

4. Дифференциальное уравнение для вырожденной гипергеометрической функции. Вырожденная гипергеометрическая функция второго рода

Покажем, что вырожденная гипергеометрическая функция является частным решением дифференциального уравнения

z +(-z) -u=0, (5.1)

где 0,-1,-2,…

u= F(,,z)=zk

=zk-1

=zk-2

Действительно, обозначая левую часть уравнения l(u) и пологая u= = F(,,z), имеем

l() = zk-2+(-z) zk-1-zk=

=[-]+[k+-k-]0.

Чтобы получить второе линейное независимое решение рассматриваемого уравнения, предположим, что , и выполним подстановку .

Уравнение (5.1) преобразуется тогда в уравнение того же вида

z +(-z) -=0

с новыми значениями параметров =1+, =2-. Отсюда следует, что при 2,3,… функция также является решением уравнения (5.1).

Если 0, 1, 2,… оба решение () имеют смысл и линейно независимы между собой, поэтому общий интеграл уравнения (5.1) может быть представлен в виде

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы