Проектирование системы автоматического управления

Необходимо минимизировать целевую функцию вида: ,

где – число элементов выборки.

Полученный функционал содержит полную информацию о параметрической неопределенности.

В качестве корректирующего устройства выберем ПИД-регулятор:

src="images/referats/8259/image119.png">.

Пусть выборка составляет 1000 элементов. В качестве эталонного сигнала выберем . В качестве ортонормированного базиса выберем систему функций Уолша (128 функций). Интервал исследования – .

имеют интервальную неопределённость 20%

Приведем здесь клетку матричного оператора интегрирования:

Получены следующие значения коэффициентов регулятора:

Несколько примеров для произвольно взятых , на которых представлены переходные характеристики эталонной системы и 4-х из семейства систем представлены на рис. 13.

Рис. 13. Графики эталонной и реальной переходных характеристик для разных значений параметра : , , ,,

Приложение.

Программа 1.

Решения уравнения методом Стеффенсена.

function Stefens

clc

e=10.^-5;

x=-20;

x1=0;

i=0;

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

x=x-(As.^2)./((0.0125*((x+As).^3)+0.3*((x+As).^2)+4.886*(x+As)+61.72)+As);

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

A(1)=x;

i=i+1;

while abs(x-x1)>e

x1=x;

x=x-(As.^2)./((0.0125*((x+As).^3)+0.3*((x+As).^2)+4.886*(x+As)+61.72)+As);

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

A(i+1)=x;

i=i+1;

end

plot(1,A(1));

hold on

for n=1:i

plot(n,A(n),'b-o')

end

grid on

xlabel('iteraciya')

ylabel('roots')

disp('ответ');

disp(x);

disp('число итераций');

disp(i);

Программа 2.

Решение дифференциального уравнения численным способом.

clc

a2=24;

a1=390.88;

a0=4937.6;

b2=0;

b3=0;

b1=230.88;

b0=4617.6;

f1=b2;

f2=b1-a1*f1;

f3=b0-a1*f1-a2*f2;

B=[f1;f2;f3]

A=[0 1 0; 0 0 1;-a0 -a1 -a2]

h=0.02;

Xt=[0;0;0];

X(1,1)=Xt(1);

X(1,2)=Xt(2);

X(1,3)=Xt(3);

F=A*Xt+B;

% Разгонный метод

K1=h*F;t(1)=0;

K2=h*(F+K1/3);

K3=h*(F+K2/6+K1/6);

K4=h*(F+K1/8+3/8*K2);

K5=h*(F+K1/2-3/2*K3+2*K4);

Xt=Xt+(1./6)*(K1+4*K4+K5);

X(2,1)=Xt(1);

X(2,2)=Xt(2);

X(2,3)=Xt(3);

t(2)=t(1)+h;

F=A*Xt+B;

i=2;

%Неявный метод второго порядка

while t(i)<1.6

X1(1)=X(i-1,1);

X1(2)=X(i-1,2);

X1(3)=X(i-1,3);

Xt=Xt+(h./12)*(5*B+8*(A*Xt+B)-(A*X1'+B));

Xt=((eye(3)-(5./12)*h*A)^-1)*Xt;

X(i+1,1)=Xt(1);

X(i+1,2)=Xt(2);

X(i+1,3)=Xt(3);

t(i+1)=t(i)+h;

i=i+1;

end

h=0.9352-0.0629*exp(-17.6849*(t))-(0.8723*cos(16.4082*(t))-0.2357*sin(16.4082*(t))).*exp(-3.1576*(t));

for j=1:i

V(j)=X(j,1);

end

E=h-V;

plot(t,V,t,h,t,E); grid on

Программа 3.

Анализа заданной системы с использованием спектрального метода.

syms t T;

Kx=(4937.6./2)*(t-T).^2-390.88*(1./2)*(-2*(t-T))+24;

Ky=(4617.6./2)*(t-T).^2-230.88*(1./2)*(-2*(t-T));

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*t)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*t).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L(i+1)=F6;

end

end

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*T)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*T).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L1(i+1)=F6;

end

end

G=L'*L1;

In=Kx*G;

r=int(In,T,0,t);

Cx=int(r,t,0,1.5);

In=Ky.*G;

r=int(In,T,0,t);

Cy=int(r,t,0,1.5);

A=((Cx+eye(10))^-1)*Cy;

Cy=int(L,t,0,1.5);

Cx=A*Су'

function H=fun(t)

Cx=[-0.1275; 0.5090; 0.2483; 0.0697; -0.0459; -0.1140; -0.1472; -0.1555; -0.1468; -0.1275];

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*t)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*t).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L(i+1)=F6;

end

end

H=(Cx'*L');

Программа 3.

Минимизация функционала.

function K=minF(X)

% Kn=X(1);

% Ku=X(2);

% Kd=X(3);

X=[0.7;

0.7;

0.7];

Kn=X(1);

Ku=X(2);

Kd=X(3);

clc

%--ПЕРЕМЕННЫЕ--%

e=0.0001;

l=1;

t=0;

h=0.001;

J1=1;

J=0;

J2=-1;

I=11;

I1=32;

alph=-10;

Xe=1-exp(alph*t);

H=eye(3);

H1=H;

Kn1=Kn+10^-3;

Kd1=Kd+10^-3;

Ku1=Ku+10^-3;

X1=[Kn1;Ku1;Kd1];

while (abs(J1-I)>e)

%--ГРАДИЕНТ--%

X3=[Kn;Ku;Kd];

U=Dif2([X3]);

J1=0;

i=1;

t=0;

while (t<2)

J1=J1+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

X3=[Kn+10^-3;Ku;Kd];

U=Dif2([X3]);

J=0;

i=1;

t=0;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g1=(J-J1)/10^-3;

X3=[Kn;Ku+10^-3;Kd];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g2=(J-J1)/10^-3;

X3=[Kn;Ku;Kd+10^-3];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g3=(J-J1)/10^-3;

I1=J;

GradJ=[g1;g2;g3];

%--НОВОЕ ЗНАЧЕНИЕ Х--%

X1=X1-l*H*GradJ;

X=X1;

Kn1=X(1);

Ku1=X(2);

Kd1=X(3);

Kn=Kn1;

Ku=Ku1;

Kd=Kd1;

X3=[Kn;Ku;Kd];

U=Dif2([X3]);

J1=0;

i=1;

t=0;

while (t<2)

J1=J1+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

X3=X1+[10^-3;0;0];

U=Dif2([X3]);

J=0;

t=0;

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы