Проектирование аппарата для очистки сточных вод от фенола и нефтепродуктов
Результаты исследований, выполненных во ВНИИ ВОДГЕО [4] на респирометре, показали, что присутствие активированного угля в системе с активным илом не приводит к увеличению скорости потребления кислорода. В то же время по полученным данным можно сделать предположение о наличии биологической регенерации активированного угля в присутствии микроорганизмов активного ила. Использование активированного
угля (порошкообразного ила гранулированного) в системах с активным илом, как правило, способствует более стабильной работе сооружений биологической очистки и обеспечивает некоторое увеличение глубины очистки как по БПК, так и по ХПК. При этом окислительная мощность сооружений возрастает.
Существенное снижение концентрации органических загрязнений, СПАВ и цветности воды происходит в результате сорбции на уголь и биохимического окисления сорбированных веществ. Эффективность снижения ХПК составляет 40-70%, БПК — 85-95%, СПАВ — 95-100%, цветности —30-40%, что существенно превосходит соответствующие показатели аэротенка.
Опыт использования лабораторной установки в течение длительного времени подтвердил возможность биологической регенерации активированного угля в процессе очистки. Стабильная непрерывная работа установки без дополнительного введения активированного угля дает возможность предполагать, что система находилась в динамическом равновесии и в ней наблюдалась непрерывная регенерация активированного угля микроорганизмами активного ила. Возможность непрерывной биологической регенерации активированного угля непосредственно в биосорбере исключает необходимость его периодической замены или пополнения.
На рис. 5 представлена конструкция лабораторной установки (биосорбера) для очистки фенол-содержащих сточных вод.
Рис. 5. Лабораторная установка для очистки сточных вод от фенола
Лабораторный биосорбер представляет собой полипропиленовую колонну диаметром 50 мм и высотой 200 мм, заполненную псевдоожиженным слоем сорбирующей загрузки (активированным углем или слоистым двойным гидроксидом железа-магния). Загрузочный материал насыпается на полиэтиленовую сетку, расположенную у дна аппарата и исключающую попадание частиц загрузки во входной трубопровод.
Для насыщения воды кислородом рядом с биосорбером предусмотрена аэрационная колонна диаметром 10 мм с аэратором типа «кольцевое сопло». Аэрационная колонна сообщается с биосорбером трубопроводом Dу=10 мм. Для предотвращения выноса частиц загрузки из аппарата в верхней части биосорбера предусмотрена сепарационная зона диаметром 100 мм и переливом высотой 20 мм. В крышке аппарата сделано отверстие для выхода отработанного воздуха.
Ниже уровня биосорбционной колонны располагаются приемная емкость и сборник чистой воды. В приемной емкости находится погружной центробежный насос, подающий воду в аэратор. Сборник и приемная емкость находятся в одном корпусе, разделенном перегородкой, не доходящей до верхнего края на 20 мм. Кроме того, в нижней части они сообщаются трубопроводом с краном рециркуляции. Это позволяет исключить неравномерность подачи и отвода жидкости, переполнение любой из емкостей, а также обеспечивает стабильность кипящего слоя и заданную кратность рециркуляции.
Установка работает следующим образом. Сточная вода подается в приемную емкость. Далее насосом она подается в аэрационную колонну, после чего поступает под псевдоожиженный слой сорбента. При контакте сточных вод с насадкой происходит очистка от фенола и других органических загрязнений в результате их адсорбции загрузочным материалом. На поверхности последнего образуются микрозоны с повышенной концентрацией органических веществ. При достаточной концентрации кислорода создаются благоприятные условия для развития микроорганизмов, осуществляющих биоокисление адсорбированных загрязнений, т. е. биорегенерацию сорбента. Избыточная масса микроорганизмов в виде взвеси потоком воды выносится из псевдоожиженного слоя в сепарационную зону и задерживается в ней, а очищенная вода собирается в лотках перелива и отводится из установки.
Данная установка позволяет проводить не только процесс очистки, но и иммобилизацию микроорганизмов в одном аппарате, без перемещения загрузки.
1.3Отработка режимов иммобилизации и очистки
Для дальнейших исследований в качестве носителя для иммобилизации микроорганизмов был выбран активированный уголь, поскольку иммобилизованный сорбент на его основе обладает набольшей эффективностью по разложению фенола.
Поскольку лабораторный биосорбер (рис. 5) позволяет проводить иммобилизацию микроорганизмов и дальнейшее использование полученного сорбента в одном аппарате, то процесс иммобилизации клеток проводился в режиме кипящего слоя путем прокачивания концентрированной суспензии клеток микроорганизмов через колонну с носителем.
Далее был проведен эксперимент по определению оптимального времени иммобилизации. Для этого производился отбор проб жидкости из сборника и определение ее оптической плотности на фотоэлектрокалориметре ФЭК-3. Поскольку содержание микроорганизмов в жидкости пропорционально ее оптической плотности (при условии, что для культивирования используются прозрачные среды), то для определения количества иммобилизованных клеток использовали наиболее простой турбидиметрический метод. Результаты эксперимента представлены на рис.6.
Как видно из графика, количество клеток в среде уменьшается, а количество иммобилизованных клеток, соответственно, увеличивается при проведении процесса до 4,5-5 часов. То есть за это время иммобилизация проходит полностью, и проведение процесса более длительное время нецелесообразно. Увеличение оптической плотности после 5 часов работы установки, по-видимому, связано с завершением адаптации микроорганизмов и началом их интенсивного размножения.
Отработка процесса очистки сточных вод с использованием биосорбента сводится к определению удельной скорости окисления загрязняющих веществ, так как этот технологический параметр необходим для нахождения количества биосорбента, необходимого для проведения очистки конкретных стоков, а, следовательно, и объема аппарата.
Эксперимент проводился следующим образом. Навеска активированного угля m=1.953 г. помещалась в биосорбционную колонну лабораторной установки. Далее проводили иммобилизацию клеток микроорганизмов путем прокачивания концентрированной суспензии клеток через установку в течении 5 часов. Отработанную культуральную жидкость сливали и колонну выдерживали 2 часа.
Затем установка заполнялась модельным стоком (водопроводная вода с добавлением фенола в концентрации 0,056 мг/л и отработанного минерального масла в концентрации 3 мг/л). Рабочий объем жидкости в установке – 2000 мл. Далее один раз в сутки производился отбор проб объемом 1 мл и пробы анализировались на содержание фенола и нефтепродуктов. Концентрацию фенола определяли по фотометрически с использованием реактива Фолина-Чокольтеу. Содержание нефтепродуктов определяли гравиметрически, путем экстракции CCl4.
Другие рефераты на тему «Производство и технологии»:
- Методика проектирования технологического процесса восстановления изношенной детали (шестерни)
- Гидравлический расчет технологического трубопровода, подбор насоса
- Деформационные способы получения полимерных пленок
- Автоматизация шлифовального процесса путем разработки автоматической системы управления регулируемым натягом
- Материаловедение
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды