Линейная регрессия

3-е уравнение НЕидентифицируемо.

В целом вся система уравнений является НЕидентифицируемой, так как первое и третье уравнение – НЕидентифицируемы.

2в) По данным, используя косвенный метод наименьших квадратов, построить структурную форму модели вида: y1=a01+b12y2+a11x1+ε1;

y2=a02+b21y1+a22x2+ε2

Таблица 8

align="center">

Вариант

n

y1

y2

x1

x2

8

1

51.3

39.4

3

10

2

112.4

77.9

10

13

3

67.5

45.2

5

3

4

51.4

37.7

3

7

5

99.3

66.1

9

6

6

57.1

39.6

4

1

Решение

1) Структурную форму модели (СФМ) преобразуем в приведенную форму модели (ПФМ):

Для этого из второго уравнения выражаем y2 и подставляем его в первое, а из первого выражаем y1 и подставляем его во второе уравнение. Получим:

y1=δ11x1+ δ12x2+u1;

y2=δ21x1+ δ22x2+u2,

где u1 и u1 –случайные ошибки ПФМ.

Здесь

2) В каждом уравнение ПФМ с помощью МНК определим δ – коэффициент.

Для первого уравнения:

.

Для решения системы уравнений требуются вспомогательные расчеты, которые представлены в таблице 9, 10.

Таблица 9

n

y1

y2

x1

x2

1

51,3

39,4

3

10

2

112,4

77,9

10

13

3

67,5

45,2

5

3

4

51,4

37,7

3

7

5

99,3

66,1

9

6

6

57,1

39,6

4

1

Сумма

439

305,9

34

40

Сред. знач.

73,17

50,98

5,67

6,67

Для упрощения расчетов удобнее работать с отклонениями от средних уровней:

∆у = у - уср; ∆х = х - хср

Таблица10

n

∆y1

∆y2

∆x1

∆x2

∆y1∆x1

∆x12

∆x1∆x2

∆y1∆x2

∆y2∆x1

∆y2∆x2

∆x22

1

-21,9

-11,6

-2,7

3,3

58,31

7,11

-8,89

-72,89

30,89

-38,61

11,11

2

39,2

26,9

4,3

6,3

170,0

18,78

27,44

248,48

116,64

170,47

40,11

3

-5,7

-5,8

-0,7

-3,7

3,78

0,44

2,44

20,78

3,86

21,21

13,44

4

-21,8

-13,3

-2,7

0,3

58,04

7,11

-0,89

-7,26

35,42

-4,43

0,11

5

26,1

15,1

3,3

-0,7

87,11

11,11

-2,22

-17,42

50,39

-10,08

0,44

6

-16,1

-11,4

-1,7

-5,7

26,78

2,78

9,44

91,04

18,97

64,51

32,11

-0,2

-0,1

-0,2

-0,2

404,03

47,33

27,33

262,73

256,17

203,07

97,33

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экономика и экономическая теория»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы