Линейная регрессия
Значение параметров А и Bлинейной модели определим по формулам:
Уравнение регрессии будет иметь вид: Y = 1,115 + 0,016x.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:
ŷ =101,115·(100,016)x;
ŷ =1
3,03·1,038x.
График 5
9. Для указанных моделей найти: R2 – коэффициент детерминации и средние относительные ошибки аппроксимации А.
для всех моделей = 264,9 (см. таблицу 5).
· Степенная модель (см. таблицу 8):
;
;
· Показательная модель (см.таблицу 9):
;
;
· Гиперболическая модель (см. таблицу 7):
.
Таблица 10
Параметры Модели |
Коэффициент детерминации R2 |
Средняя относительная ошибка аппроксимации А |
1. Степенная |
0,857 |
7,5 |
2. Показательная |
0,827 |
9,6 |
3. Гиперболическая |
0,672 |
12,5 |
Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов. Чем ближе R2 к 1, тем выше качество модели.
Чем выше рассеяние эмпирических точек вокруг теоретической линии регрессии, тем меньше средняя ошибка аппроксимации. Ошибка аппроксимации меньше 7% свидетельствует о хорошем качестве модели.
При сравнении гиперболической, степенной и показательной моделей по данным характеристикам мы видим, что наибольшее значение коэффициента детерминации R2 и наименьшую ошибку аппроксимации имеет степенная модель, следовательно, ее можно считать лучшей.
Задача 2
Даны две СФМ, которые заданы в виде матриц коэффициентов модели. Необходимо записать системы одновременных уравнений и проверить обе системы на идентифицируемость.
Таблица 1
№ варианта |
№ уравнения |
Задача 2а |
Задача 2б | ||||||||||||
переменные |
переменные | ||||||||||||||
y1 |
y2 |
y3 |
x1 |
x2 |
x3 |
x4 |
y1 |
y2 |
y3 |
x1 |
x2 |
x3 |
x4 | ||
8 |
1 |
-1 |
b12 |
b13 |
0 |
a12 |
a13 |
0 |
-1 |
0 |
b13 |
a11 |
0 |
a13 |
a14 |
2 |
0 |
-1 |
b23 |
a21 |
a22 |
0 |
a24 |
b21 |
-1 |
b23 |
0 |
a22 |
0 |
a24 | |
3 |
0 |
b32 |
-1 |
a31 |
a32 |
a33 |
0 |
b31 |
0 |
-1 |
a31 |
0 |
a33 |
a34 |
Решение
2а) , тогда система уравнений будет иметь вид:
Модель имеет 3 эндогенные (y1, y2, y3) и 4 экзогенные (x1, x2, x3, x4) переменные. Проверим каждое уравнение на необходимое и достаточное условие идентификации.
1 уравнение: y1= b12y2+b13y3+a12x2+a13x3;
Необходимое условие: D + 1 = H
Эндогенные переменные: y1, y2, y3; H=3
Отсутствующие экзогенные переменные: х1, х4; D=2
2+1=3 - условие необходимости выполнено.
Достаточное условие: В уравнении отсутствуют х1, х4. Построим матрицу из коэффициентов для второго и третьего уравнения:
Таблица 2
Уравнение |
переменные | |
х1 |
х4 | |
2 |
a21 |
a24 |
3 |
a31 |
0 |
Другие рефераты на тему «Экономика и экономическая теория»:
Поиск рефератов
Последние рефераты раздела
- Рейдерство в России на примере рейдерского захвата «МЕГА ПАЛАС ОТЕЛЯ» в г. Южно-Сахалинск
- Акционерные общества и их роль в рыночной экономике
- Акционерное общество (компания, корпорация) как главный институт предпринимательской деятельности
- Альтернативные модели в рамках экономических систем
- Анализ внешней и внутренней среды предприятия
- Анализ государственного регулирования инновационной деятельности
- Анализ демографической ситуации и оценка использования трудовых ресурсов России