Парная и множественная регрессия и корреляция

 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95

%

Верхние 95%

Y-пересечение

8,271668362

3,844685341

2,151455224

0,07495556

1,135937744

17,67927447

Переменная X 1

0,160732452

0,337194727

0,476675461

0,6504571

0,664353319

0,985818223

Вывод остатка

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

1

9,846846389

0,353153611

0,510263509

2

10,08794507

0,012054934

0,017417896

3

10,12009156

-0,020091556

-0,029029827

4

10,08794507

-0,887945066

-1,28297135

5

10,02365209

0,676347915

0,977239505

6

10,10401831

-1,104018311

-1,595170599

7

10,29689725

0,103102747

0,148970781

8

10,23260427

0,867395727

1,253280084

2. Нелинейные модели регрессии и их линеаризация

Цель работы: ознакомиться с методикой расчета показателей парной нелинейной регрессии и корреляции, овладеть приемами построения нелинейных регрессионных моделей с помощью MS Exсel.

РЕШЕНИЕ:

2.1.1 Регрессия в виде степенной функции имеет вид:

.

Для оценки параметров модели линеаризую (привожу к линейному виду) модель путем логарифмирования: .

Обозначаю lny =Y, lna =A, lnx =X.

Тогда получаю: Y=A+bX.

Для расчетов составляю с помощью MS Excel вспомогательную таблицу, в которой рассчитаю натуральные логарифмы с помощью математической функции LN (рисунок 7).

Рисунок 7 Расчет натуральных логарифмов

Далее с помощью инструмента Регрессия рассчитываю параметры уравнения (рисунки 8, 9).

Рисунок 8 Диалоговое окно Регрессия

Рисунок 9 Результаты расчета параметров степенной функции

Таким образом, уравнение регрессии имеет вид:

.

Выполнив потенцирование, получим:

.

Параметр b=0,151 означает коэффициент эластичности, который показывает, что с ростом величины среднедушевых доходов населения на 1% общий коэффициент рождаемости увеличится в среднем на 0,151%.

2.1.2 Регрессия в виде экспоненты имеет вид:

. (13)

Для оценки ее параметров необходимо привести уравнение к линейному виду:

.

Для расчета параметров экспоненциальной прямой можно воспользоваться статистической функцией ЛГРФПРИБЛ MS Excel. Результаты вычислений представлены на рисунке 10.

Рисунок 10 Результаты вычислений параметров экспоненциальной функции

Таким образом, уравнение регрессии в виде экспоненты имеет вид:

.

2.1.3 Регрессия в виде равносторонней гиперболы имеет вид:

,

чтобы оценить параметры a и b, привожу модель к линейному виду, заменив

.

Тогда

.

Результаты замены представлены на рисунке 11.

Рисунок 11 Вспомогательная таблица для расчета параметров гиперболы

Далее с помощью инструмента Регрессия рассчитываю параметры уравнения. Результаты расчета представлены на рисунке 12.

Рисунок 12 Результаты вычислений параметров гиперболической функции

Выберем наилучшую модель, для чего объединим результаты построения парных регрессий в одной таблице 3.

Все уравнения регрессии достаточно хорошо описывают исходные данные.

Таблица 3 Результаты корреляционно-регрессионного анализа

Уравнение регрессии

Коэффициент корреляции

Коэффициент детерминации

F-критерий Фишера

0,659

0,036

0,227

0,161

0,026

0,159

0,179

0,032

0,201

0,152

0,023

0,143

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы