Парная и множественная регрессия и корреляция
.
Параметры уравнения можно определить и по следующим формулам:
= 10,1 – 0,1608. 11,375= 8,2709
Величина коэффициента регрессии b = 0,1607 означает, что с ростом среднедушевых доходов на
1 тыс. руб. общий коэффициент рождаемости увеличится в среднем на 0,1607 раз.
1.1.2 Средний коэффициент эластичности для линейной регрессии находится по формуле:
0,181
При увеличении величины среднедушевого дохода на 1%, общий коэффициент рождаемости в среднем увеличится на 0,181%.
1.1.3 Линейный коэффициент парной корреляции (r) определяется по формуле:
,
где средние квадратические отклонения:
тогда , значит связь между среднедушевым доходом и рождаемостью очень слабая.
1.1.4 Определим коэффициент детерминации:
Таким образом, вариация величины рождаемости на 3,6% зависит от вариации уровня среднедушевых доходов населения, а на остальные (100%-3,6%) 96,4% − от вариации факторов, не включенных в модель.
Подставляя в уравнение регрессии фактические значения x, определим теоретические (расчетные) значения (таблица 1) и найдем величину средней ошибки аппроксимации ():
==0,425
Так как допустимый предел значений не более 8-10%, качество модели по данному показателю удовлетворительное. Однако средняя ошибка аппроксимации не является главным критерием оценки значимости модели.
С помощью F−критерия Фишера оценим статистическую надежность результатов регрессионного моделирования:
Fфакт==.
Fтабл = 5,99 при .
Так как Fфакт < Fтабл, уравнение регрессии не значимо, статистически не надежно.
1.2 Решение задачи с помощью MS Excel
1.2.1 Параметры линейной регрессии
можно определить с помощью встроенной статистической функции ЛИНЕЙН MS Excel. Порядок вычисления следующий:
1) ввожу исходные данные (рисунок 1).
2) выделяю область пустых ячеек 5´2 (5 строк, 2 столбца) с целью вывода результатов регрессионной статистики или область 1´2 – для получения только оценок коэффициентов регрессии;
3) активизирую Мастер функций любым из способов:
а) в главном меню выбираю Вставка / Функция;
б) на панели инструментов Стандартная щелкаю по кнопке Вставка функции;
Рисунок 1 Ввод данных для корреляционно-регрессионного анализа
4) в окне «Категория» выбераю Статистические, в окне «Функция» – ЛИНЕЙН. Щелкаю по кнопке ОК (рисунок 2);
Рисунок 2 Диалоговое окно Мастер функций
5) заполняю аргументы функции (рисунок 3):
Рисунок 3 Диалоговое окно Аргументы функции
Щелкаю по кнопке ОК;
6) в левой верхней ячейке выделенной области появился первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажимаю на клавишу <F2>, а затем – на комбинацию клавиш <CTRL> + <SHIFT> + <ENTER>.
Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:
Значение коэффициента b |
Значение коэффициента a |
Среднеквадратическое отклонение b |
Среднеквадратическое отклонение a |
Коэффициент детерминации R2 |
Среднеквадратическое отклонение y |
F – статистика |
Число степеней свободы |
Регрессионная сумма квадратов |
Остаточная сумма квадратов |
Результаты вычислений функции ЛИНЕЙН представлены на рисунке 4.
Рисунок 4 Результаты вычислений функции ЛИНЕЙН
1.2.2 С помощью инструмента анализа данных Регрессия, помимо результатов регрессионной статистики, дисперсионного анализа и доверительных интервалов, можно получить остатки и графики подбора линии регрессии, остатков и нормальной вероятности. Порядок действий следующий:
1) проверяю доступ к пакету анализа. В главном меню последовательно выбераю Сервис / Настройки. Устанавливаю флажок Пакет анализа;
2) в главном меню выбираю Сервис / Анализ данных / Регрессия. Щелкаю по кнопке ОК;
3) после вызова режима Регрессия на экране появляется диалоговое окно (рисунок 5), в котором задаются следующие параметры:
Рисунок 5 Диалоговое окно режима Регрессия
Результаты регрессионного анализа для исходных данных представлены на рисунке 6.
Вывод итогов
Регрессионная статистика | |
Множественный R |
0,19101862 |
R-квадрат |
0,03648811 |
Нормированный R-квадрат |
-0,1240972 |
Стандартная ошибка |
0,74755394 |
Наблюдения |
8 |
Дисперсионный анализ
df |
SS |
MS |
F |
Значимость F | |
Регрессия |
1 |
0,12697864 |
0,126978637 |
0,2272195 |
0,6504571 |
Остаток |
6 |
3,35302136 |
0,558836894 | ||
Итого |
7 |
3,48 |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Многомерный статистический анализ
- Анализ предприятия с использованием регрессивного анализа
- Экономический анализ характеристик взаимосвязи
- Экономико-математическое моделирование анализа ресурсов
- Исследование зависимости между объемом производства, капитальными вложениями и выполнением норм выработки
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели