Математическое моделирование роста доходности страховой компании
l¢(t)=(1-a+am)j’()e-rt+l(t)(g+d+pc-(1-m)j’()
e-rt(1-a+am)(j()-j’()mg width=37 height=44 src="images/referats/9828/image003.png">)+l(t)((1-m)(j’()-j())+ Cm+1)=0
K’(t)-(1-m)L(t)j( )+(g+d+pc)K(t)+(Cm+1)L(t)=0 (1.5)
Обозначим k(t)=K(t)/L(t) и продифференцируем по t
k’(t)= (1.6)
Из (1.5) учитывая, что n(t)=(dL/dt)/L(t), получим:
K’(t)/L(t) = k’(t)+ k (t)n(t) (1.7)
ля упрощения выписанных выше выражений введем еще одно обозначение: z(k) = j’(k) k -j(k) (1.8)
Функция j(k) построена на основе F(,1) и поэтому для нее выполняются следующие свойства:
a) j¢(k)>0
b) j¢¢(k)<0
c) j’(k) ® ? для k ® 0
d) j’(k) ® 0 для k ® ?
Разделив последнее уравнение из (1.5) на L(t) и учтя обозначения, получим:
l’(t)= (1-a+am)j’(k(t))e-rt+l(t)(g+d+pc-(1-m)j’(k(t))) (1.9)
l(t) =( 1-a+am)z(k(t))e-rt /((1-m)z(k(t))+Cm+ 1) (1.10)
k’(t)=(1-m)j(k(t))-(g+d+pc)k(t)- (Cm+1) (1.11)
Продифференцировав (1.10) по t, получим:
-rt
l¢(t)=2 -rl(t) (1.12)
Учитывая, что
z’(k(t)) =j’’(k(t))k’(t)k(t) (1.13),
получаем, что формула (1.12) примет вид.
-rt
l¢(t)=2-rl(t) (1.14)
Подставляя в (1.14) соотношения (1.9) и (1.10), выясним, что темп изменения капиталовооруженности вычисляется по формуле:
k’(t) = (1.15)
где
U(t) = (1 -m ) z(k(t)) + 1 + Cm
V(t) =(1-a+am)(j¢(k(t))U(t) + z(k(t))(r + d+g+pc-(1-m)j¢(k(t)))
Проведем качественный анализ уравнения ( 1.15 ).
Так как j¢(k) <0 для k >0, знаменатель в ( 1.15 ) отрицателен.(Мы предполагаем, что (1-a+am)(1+Cm)>0).
Далее из условий на функцию j(k) для z(k)=j¢(k)k-j(k) получаем z(k)£0 и z(k)® 0 при k ®0, и z(k) ® - ? при к ® ?. Для малых k
получаем U>0, V>0, так как j¢(k) - большое число, то k’<0. Для больших k получаем U<0, V<0, так как z(k) ® - ?, следовательно k’ <0. Из монотонного убывания U и V, что каждое из рассматриваемых уравнений U=0 и V=0 имеет единственный корень.
Таким образом область разбивается на три участка: kÎ[0,k1),
k Î[ k1, k2),kÎ[ k2,¥)
Из рисунка 1 видно, что существует одна точка не устойчивого равновесия k1(m) и две точки 0 и k2(m) устойчивого равновесия. Нетрудно видеть, что k1(m) и k2(a,m) монотонно возрастающие функции по m. Если начальное значение k0=K0/L0 меньше чем k1(m), тогда k® 0 и фирма гибнет. В противном случае размеры фирмы стабилизируются и стремятся к k2(m). Следовательно мы можем рассматривать k2(m) как оптимальный размер фирмы для данных значений параметров управления a,m,g,d,Wr,Cm. Таким образом, если заданы величины указанных выше параметров, то по величине k(t)=может быть оценено качество начального состояния и перспективы развития страховой компании.
Предлагается следующий путь:
Если <K(0), то необходимы меры по росту капитала или уменьшению L(t).Если есть возможность увеличить капитал, например за счет кредита, то получаем следующую задачу:
>K(0)
DK(t)®max
Если нет никакой возможности по увеличению капитала, то уменьшают фонд оплаты труда. В этом случае задача выглядит следующим образом:
>K(0)
L(t)*<L(t)<L(t)**
DL(t)®min
Приведем пример расчетов оптимального размера фирмы.
Рассмотрим влияние изменений параметра управления a на оптимальный размер страховой компании. Данные для расчета были предоставлены компанией Росгосстрах. Предполагается, что d=0.13, g=0.03, m= 0.1, Cm=0.8. Тогда зависимость k1, k2 представлены в таблице 1.
k/a |
0 |
¼ |
1/2 |
¾ |
1 |
k1 |
7.2 |
7.2 |
7.2 |
7.2 |
7.2 |
k2 |
3.49 |
3.39 |
3.15 |
3.13 |
2.93 |
Таб.1
Можно исследовать значения k1 и k2 для других значений параметров, полагая m= 0.05, получаем таблицу 2.
a |
0 |
1/4 |
1/2 |
3/4 |
1 |
k1 |
6.8 |
6.8 |
6.8 |
6.8 |
6.8 |
k2 |
3.4 |
3.23 |
3.15 |
3.13 |
3 |
Таб.2
Окончательно заметим, что изменение ставки комиссионного вознаграждения m при фиксированном капитале К ведет к уменьшению капиталовооруженности k.
§2 Математический анализ многомерной модели роста доходности страховых компаний
Рассматриваемая модель имеет вид:
Максимизировать
m R(t) + (1-a) R(t)) e-rt dt
при условии
(1-m)R(t)=+(Cm+1)L(t) + dK(t)+ K’(t)+ p(t)K,
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели