Математическое моделирование роста доходности страховой компании

В результате исходная модель записывается в виде (2.1)-(2.3)

Далее, выпишем систему уравнений Эйлера - Лагранжа, вытекающую из (2.1)-(2.3)

( am1j ‘() + (1-a)j’()e-rt+l(t)(g+d+pc-(1-m1-m2)j’()-l’(t)

=0

( am2j ‘() + (1-a)j’()e-rt+l(t)(g+d+pc-(1-m1-m2)j’()-l’(t)=0

(a ( m1j() +m2j()-(m1j’()+m2j’ ())) + (1-a) (j()-j’()))e -rt+l(t)((1-m1-m2)j’()-(1-m1-m2)j() + Cm+1)=0

K’(t)-(1-m)L(t)j()+(g+d+pc)K(t)+(Cm+1 )L(t)=0 (3.1)

Перепишем последнюю систему в удобном виде.

l¢(t)=(am1j’()+(1-a)j’())e-rt+l(t)(g+d+pc-(1-m1-m2)j’(())

l¢(t)=(am2j’()+(1-a)j’())e-rt+l(t)(g+d+pc-(1-m1-m2)j’(())

(am1(j()-j’())+am2(j()-j’())+(1-a)(j()-j’()))e-rt+l(t)((1-m1-m2)(j’()-j())+Cm+1)=0

K’(t)-(1-m)L(t)j()+(g+d+pc)K(t)+(Cm+1 )L(t)=0 (3.2)

Проведя аналогичные рассуждения, что и в §1, введем обозначения аналогичные (1.8) z(kj(t)) = j’(kj(t)) kj(t) -j( kj(t) ) для j=1,2. (3.3)

Разделив (3.2) на L(t) и учитывая обозначения (3.3) и (1.8), получим:

l’(t)=(am1j’(k1(t))+(1-a)j’(k(t)))e-rt+l(t)(g+d+pc-(1-m1-m2)j’(k(t))) (3.4)

l’(t)=(am2j’(k2(t))+(1-a)j’(k(t)))e-rt+l(t)(g+d+pc-(1-m1-m2)j’(k(t))) (3.5)

-rt

l(t)= (3.6)

k’(t) = (1 -m)j(k(t))-(g+d+pc)k(t) - (Cm + 1) (3.7)

После дифференцирования (3.7) по t получим:

l¢(t) = e-rt[(am1z’(k1(t))+am2z’(k2(t))+(1-a) z’(k(t)))(Cm+1+(1-m1-m2)z(k(t))) - (am1z(k1(t))+am2z(k2(t))+(1-a)z(k(t)))(1-m1-m2)z’(k(t))]/ [(1-m1-m2)z(k(t)) + Cm + 1 ]2 - rl(t) (3.8)

Учитывая (1.8) и аналогичные выражения для z(kj(t)) для j=1,2,получаем, что формула (3.8) примет вид:

l¢(t)=e-rt[(am1j’’(k1(t))k’1(t)k1(t)+am2j’’(k2(t))k’2(t)k2(t)+(1-a)j’’(k(t)) k’(t)k(t))(Cm+1+(1-m1-m2)z(k(t)))-(am1z(k1(t))+am2z(k2(t))+(1-a)z(k(t)))(1-m1-m2) j’’(k(t))k’(t)k(t))]/ [(1-m1-m2)z(k(t)) + Cm + 1 ]2 - rl(t) (3.9)

Подставляем в (3.9) соотношения (3.5),(3.7) и (3.6),(3.7), получим, что темп изменения капиталовооруженностей вычисляется по формулам:

k’(t) = (1 -m)j(k(t))-(g+d+pc)k(t) - (Cm + 1)

k’1(t)=[(am1j’(k1(t))+(1-a)j’(k(t)))U(t)+(g+d+pc-(1-m1-m2)j’(k(t)))

k’2(t)=[(am2j’(k2(t))+(1-a)j’(k(t)))U(t)+(g+d+pc-(1-m1-m2)j’(k(t)))

где

U(t) = (1-m1-m2 ) z(k(t)) + 1 + Cm

Если заданы параметры a, m1, m2, Cm,d, g может быть рассчитана капиталовооруженность по каждому виду страхования. Это позволит сделать обоснованные выводы о целесообразности включения нового вида страхования.

§4 Анализ дискретного аналога простейшей модели роста доходности страховой компании

Разработка и качественный анализ задач управления показал их теоретическую значимость для определения путей совершенствования работы страховых фирм и одновременно наличие вычислительных и информационных трудностей в их реализации. Однако, используя логику приведенных выше соотношений, можно сформулировать дискретные аналоги моделей, позволяющие записать задачу в виде привычных достаточно легко реализуемых задач оптимизации и разрешить их имеющимися математическими и программными средствами. Этот путь был реализован для простейшей модели.

Рассматриваемая модель имеет вид:

aIT+(1-a)(RT+pcKT) ® max

при ограничениях

It=mRt-1-haD Kt-1 "t t=1,T

Rt=F(Kt,Lt) "t t=1,T

Kt=Kt-1+(1-a)D Kt "t t=1,T

Lt=Lt-1+D Lt "t t=1,T

(1-m)Rt=Wat+Lt+dKt+pcKt "t t=1,T

Wat=g Kt+CmLt "t t=1,T

0<a<1,0<m<1,0<h<1,Kt>0, Lt>0, DKt>0, DLt>0 "t t=1,T

K0, L0,а, d, pc,g, Cm- заданы

Для реализации этой модели предлагается использовать метод Соболя.

Отличительной чертой данного метода является систематический просмотр многомерных областей: в качестве пробных точек в пространстве параметров (переменных) используются точки равномерно распределенных последовательностей. Для этих целей были применены так называемые ЛПt- последовательности, которые обладают наилучшими характеристиками равномерности. Подробнее этот метод приведен в [11] с обоснованием и доказательством сходимости последовательностей к решению.

Сверхбыстрый алгоритм. В работе [12] предложен способ расчета ЛПt- последовательностей. Для этого порядок следования точек Qi меняется так, чтобы каждая следующая точка Qi вычислялась по предыдущей точке Qi-1 с помощью одной операции , где означает поразрядное сложение по модулю два в двоичной системе (операция “ исключающее ИЛИ”). Приведем таблицу истинности для этой логической операции:

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы