Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов
Применение узкоспециализированных измерительных приборов приводит к резкому увеличению затрат, так как эти приборы дороги.
В случае измерения активных РК практически в каждом конкретном случае приходится решать задачи электропитания по постоянному и переменному току.
Разнообразие номенклатуры и типоразмеров РК, подлежащих измерению, выдвигает на одно из первых мест задачу подключения об
ъекта измерения к измерительной схеме, особенно в случае определения динамических параметров.
В этой связи возникает проблема разработки нестандартных способов и средств измерения, позволяющих при использовании стандартных универсальных измерительных приборов ограниченного состава производить автоматизированное измерение параметров широкой номенклатуры РК в ограниченное время. Решение этих задач отражено в работах [25-70], выполненных в ВГТУ в 70-х - 90-х годах, будет рассмотрено в данном разделе.
3.2 Устройства для измерения двухполюсников
3.2.1 Измерение статических параметров
Статические параметры определяют в виде ВАХ или моделью Эберса-Молла (полупроводниковые диоды).
Для определения ВАХ определенное преимущество имеет зависимость в виде U(l), когда ток через ДПР поступает от источника тока, и регистрируют напряжение на его электродах.
При обратном смещении, когда сопротивление перехода весьма велико, электропитание производится от источника напряжения.
ВАХ при прямом смещении по Эберсу-Моллу определяют по уравнению
Из изложенного следует, что определение ВАХ не представляет сложности. Принятый способ измерения динамических параметров позволяет производить определение статических и динамических параметров ДПР на одной технологической установке.
3.2.2 Y-устройства для измерения ДП
Первое (базовое) измерительное устройство, показанное на рисунке 3.1, предназначено для измерения линейных ДПР. По структуре оно соответствует устройству по а.с. № 1580282 СССР при применении ручных операций калибровки параметров Lk и Х0. Устройство содержит генератор 1 для электропитания измерительных цепей по переменному току, векторный вольтметр (ВВ) 2 для регистрации модуля и разности фаз переменных напряжений, элемент Zr для моделирования внутреннего сопротивления генератора 1, если это необходимо, контакт! для подключения измеряемого ДПР с полным сопротивлением Z. В качестве элемента Zr в первом приближении применяют резистор с учетом его паразитных параметров.
В процессе калибровки по напряжениям °, и*, ' и изопределяем параметры эквивалентной схемы по формулам (2.43), (2.47) рассчитываем индуктивности Lk, lq, если значение индуктивности L0 будет для аттестации вектора образцовых нагрузок uq.
Y = l/W + j/<9 (3.4)
где W - параметр, вычисляемый по формуле (2.37).
При измерении нелинейных ДПР в схему рис. 3.1 добавляем источник тока (напряжения) для смещения рабочей точки и цепочку R( , С} , С2 развязки цепей электропитания по переменному и постоянному току (рисунок 3.2).
При измерении полупроводниковых диодов источник 3 работает в режиме источника тока. ВАХ определяют по зависимости UC(IC), где Uc , Ic -постоянные составляющие тока и напряжения на измеряемом диоде.
Динамические параметры в виде проводимости Y определяют по формуле (3.4).
В случае обратного включения диода источник 3 переключают в режим источника напряжения. По значению напряжения U на выходе Г регистрируют полную проводимость в зависимости от напряжения обратного смещения Uc (рисунок 3.2). Полную проводимость Y рассчитывают по формуле (3.4), а значение Сбар барьерной емкости по формуле
C6ap=Y/co, (3.5)
где со - угловая частота.
При измерении мощных нелинейных ДПР возникает проблема электропитания по постоянному току из-за большого уровня мощности, которая рассеивается на резисторе rj (рисунок 3.2). Для устранения этого эффекта предлагается использовать схему рисунок 3.3, в которой в отличии от схемы рисунок 3.2 резистор R] шунтирован катушкой индуктивности lj.
Измерение параметров ДПР производится также как в случае применения устройства на рисунке 3.2. При этом постоянная составляющая тока проходит через катушку li без падения напряжения на ней. Внутреннее сопротивление генератора 1 составляет включенные в параллель по переменному току сопротивления Zr , ri и coL]. Сопротивление toL] в рабочем диапазоне частот выбирается из уровня
Оптимальный режим при измерении динамических параметров достигается при условиях [51]
3.3 Устройства для измерения МП
В качестве базового для первого из рассматриваемых устройств выбрано устройство по А.с. 1084709 СССР, МКИ G 01 R 31/26 [1]. Развитие устройства произведено с учётом способа измерения по А.с. 1317370 СССР, МКИ G 01 R 27/32 [2]. Структурная схема первого устройства приведена на рисунке 3.4.
Устройство содержит: генератор синусоидального напряжения (ГСН), выход которого соединён с опорным выходом векторного вольтметра (ВВ) и первыми выходами К1 и К2, вторые выходы которых соединены с общей шиной; программатор (П), выводы которого соединены с управляющими входами переключателей ю, К2 и КЗ; входы переключателя КЗ соединены с базовым и коллекторным контактами держателя транзистора (ДТ), а его выход с измерительным входом ВВ.
Выход переключателя К\ через цепочку С2, R2 соединены с базовым входом ДТ, а выход переключателя К2 через цепочку СЗ, R3 соединён с коллекторным входом ДТ. выход усилителя (У) через резистор R\ соединён с базовым входом ДТ для электропитания базы транзистора по постоянному току, а выход источника тока (ИТ) через резистор R5 соединён с коллекторным входом VTI по постоянному току. Делитель на резисторах R4, R6 предназначен для деления напряжения Ut. Его выход соединён с входом У. Источник опорного напряжения (ИН). Через резистор R6 соединён с входом У. Конденсаторы С2 и СЗ служат для разделения цепей постоянного и переменного тока, а конденсаторы С1, СЗ, С 4 и С5 для развязки указанных цепей. Блок питания (БП) предназначен для электропитания по постоянному току блоков П и У.
Применение устройства по рисунку 3.4 позволяет стабилизировать рабочую точку (РТ) со стороны коллектора независимо от типа или структуры транзистора. Рассмотрим процесс стабилизации РТ на примере биполярного транзистора п-р-п структуры.
напряжение Uk рассчитывают по формуле
На практике коэффициент KQ выбирают в интервале 0,1-0,5. Таким образом, РТ транзистора VTI определяют ток Ik на выходе ИТ и напряжение U0 на выходе ИН. При использовании программируемых ИТ и ИН процесс установления РТ можно автоматизировать, управляя источниками от ПК.
Для измерения Y - параметров устройство на рисунке 3.4 в отличие от устройства [1] было приспособлено для измерения в режиме определённом способом [2]. Для этого предварительно измерительную схему калибруют в режиме холостого хода с помощью образцовых мер ZOI и Z02 и измеряют матрицу С/0 полюсных напряжений холостого хода, а в рабочем (при подключенном транзисторе) режиме измеряют матрицу U9 элементами которой служат полюсные напряжения при прямом и обратном включении транзистора.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Устройства передачи информации по сети электропитания
- Многооперационные станки (МС) для обработки корпусных деталей
- Проектирование локальной вычислительной сети с применением структурированной кабельной системы
- Амплитудно-частотные характеристики и настройка связанных контуров
- Разработка микшерного пульта
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем