Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов
В общем случае процессы в формальном многополюснике (ФМП) можно представить нелинейными дифференциальными уравнениями вида:
(2.1)
(2.2)
(2.3)
где i≠1;
t - время;
I, U - в
ектор-функции определяемые токами и напряжениями на полюсах;
fi и fp ~ некоторые функции, в общем случае нелинейные;
X - вектор-функция времени с составляющими xi,x2, .Xq , которые связаны с различными физическими величинами в зависимости от принципов построения модели.
Кроме множества N полюсов, структуру ФММР представляет подмножество А полюсов для электропитания по переменному току в процессе преобразования сигналов и под множество S полюсов для электропитания МП по постоянному току для создания рабочего режима.
Связь между множествами A, S и N определяет выражение
A<N, S<N. (2.4)
Пусть а- размер A, a bi - его элемент при i=l,a, s-размер S, Ср его элемент при j=l,s.
В случае ФМП множество полюсов N представляет собой объединение полюсов А и S, т.е.
N=AUS. (2.5)
При этом возможны следующие отношения между A, S и N. Для пассивных устройств:
S=0, A=N. (2.6)
Для устройств постоянного тока, для которых мгновенными измерениями сигналов во времени можно пренебречь
А=0, S=N. (2.7)
Подмножества А и S совпадают (например для транзистора)
A=S=N. (2.8)
Для устройств типа операционного усилителя
AS=N. (2.9)
Полюса А и S изолированы друг от друга (некоторые интегральные схемы)
AS,N=A+S. (2.10)
Условия (2.6)-(2.10) необходимо учитывать как при конкретном применении МП, так и при организации процесса измерения его параметров.
В качестве базового узла ФММР можно выбрать любой из его полюсов и даже объединить несколько полюсов. В этом случае порядок МП понизится на число полюсов принятых в качестве базовых, и его модель принципиально упростится.
С другой стороны базовый узел может быть внешним по отношению к МП, т.е. электрически с МП не связан. В этом случае первый закон Кирхгофа для мгновенных токов, втекающих в N-полюсник, может быть записан в виде
(2.11)
А линейные устройства будут иметь особенные матрицы параметров, т.е. сумма элементов этих матриц по строкам и столбцам будет равна 0. В этой связи для описания ФММР достаточно идентифицировать N-1 строк и столбцов.
2.2 Структура элементной базы радиоэлектронных средств
Элементную базу (ЭБ) РЭС составляет множество различных РК радиокомпонентов, на основе которых производится проектирование. В самом общем случае ЭБ РЭС может быть представлена структурной схемой, показанной на рисунке 2.2.
Согласно схеме на рисунке 2.2 ЭБ РЭС может быть подразделена на двухполюсные (ДП) и многополюсные (МП) РК, которые в свою очередь могут быть представлены пассивными (ПК) и активными (АК) РК. Под ПК будем понимать РК, в процессе функционирования которых не происходит увеличение уровня мощности поступающего на РК за счёт дополнительных источников энергии. Остальные РК будем считать активными.
АК и ПК предлагается разделить на следующие крупные классы:
- дискретные (Д), отличающиеся законченностью конструкции и готовностью к непосредственному применению в сложных РЭС.
- с распределёнными параметрами (Р), принцип действия которых основан на использовании волновых процессов в электромагнитных и акустоэлектронных устройствах.
- акустоэлектронные (А), работающих на основе акустоэлектронных явлений в твёрдом теле.
- функциональные (Ф), предназначенные для глубокой обработки электрических сигналов.
- интегральные (И), полученные по интегральным технологиям.
- гибридные (Г), полученные по смешанным технологиям.
- цифровые (Ц), предназначенные для цифровой обработки сигналов.
Структурная схема (рисунок 2.2), по существу, отвечает классификации ЭБ РЭС, ориентированной на применение РК в САПР.
Разделение РК на ДП и МП достаточно условное. Так, любой ДП в зависимости от способа включения в электрическую схему можно рассматривать как собственно ДП или как МП, а именно четырёхполюсник на рисунке 2.3.
а) вариант включения ДП как собственно ДП; б) как четырёхполюсника; Y - его полная проводимость;
0,1,2 - узлы подключения к схеме. Рисунок 2.3 - Варианты включения ДП
Согласно рисунку 2.За ДП полностью идентифицируется его полной проводимостью Y. В случае рисунка 2.36 для полного описания четырёхполюсника необходимо использовать его Y- матрицу, коэффициенты которой определяет проводимость Y базового ДП
(2.12)
Количество полюсов у МП также зависит от способа его включения в электрическую схему, а в пределе, используя определенные комбинации соединения полюсов, МП можно превратить в двухполюсник (рисунок 2.4).
В самом деле, включая в схему транзистор, согласно рисунку 2.4а, его нужно рассматривать как шестиполюсник, в случае рисунка 2.46 - как четырёхполюсник, а при объединении базы с коллектором и соединении эмиттера с общей шиной (рисунок 2.4в) - как ДП. Соответственно необходимо изменить и описание модели транзистора, например, с помощью Y - матрицы. Пусть транзистор, включённый по схеме рисунка 2.4.6 имеет матрицу проводимости
(2.13)
а) подключение транзистора в рабочую схему как шестиполюсника; б) - четырёхполюсника; в) - двухполюсника; 0,1,2,3 - узлы подключения.
Тогда матрицу Ґ2 транзистора, включённого по рисунку 2.4а можно выразить в виде
(2.14)
Коэффициенты уц, Уп, У2Ь У22 матрицы Y2 точно соответствуют коэффициентам матрицы Yb а остальные пять коэффициентов определяют по формулам
y13=-y11-y12 (2.15)
y23=-y21-y22 (2.16)
y31=-y11-y21 (2.17)
y32=-y12-y22. (2.18)
y33=y11+y12+y22+y21 (2.19)
Наконец, проводимость транзистора, представленного двухполюсником (рисунок 2.4в), рассчитывают по формуле
y=y11+y22+y33 (2.20)
Формулы (2.15)-(2.20) справедливы, если режим транзистора по постоянному току для всех трёх рассмотренных выше случаев идентичен.
При проектировании РК и идентификации его параметров необходимо учитывать область действия физических законов, связанных с его функционированием. Особое внимание необходимо уделять электрофизическим законам, которые определяют основные электрические параметры РК. В каждом конкретном случае доминирует одно из электрофизических явлений но также, проявляется влияние и. других*, паразитных.
Так, в основу функционирования резистора положено явление электрического сопротивления постоянному или переменному току. Однако также в большей или меньшей степени неизбежно проявляется влияние электрического и магнитного полей, существенным образом увеличивающееся с ростом частоты. Магнитные и электрические эффекты резистора моделируют посредством индуктивности и ёмкости. В этой связи модель резистора с увеличением частоты усложняют (рисунок 2.5), используя на ВЧ и СВЧ диапазонах многоэлементные эквивалентные схемы [3,4].
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем