Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов

I = Y U ; U = Z 1; hi - A d2: hi = Н h2; b = S a: a = Т b, (2.39)

где I = [ Il, .,Ii, .,In ] - вектор столбец токов:

U= [ Ul, .,Ui, .,Un ] - вектор столбец напряжений;

hl= [ U 1,12] - вектор столбец входных параметров;

h2= [ 11 ,U2] - вектор столбец входных параметров;

dl= fUl,Il] - вектор столбец входных параметров;

d2= [ЧЛД1] - вектор столбец входных параметров;

а

= [ al, . ,ai, . ,ап]- вектор столбец падающих волн;

b = [ ] - вектор столбец отраженных волн.

i - текущий индекс параметра;

п - размер матрицы.

Все матрицы можно пересчитать из одной в другую при одинаковых их размерах. На практике наиболее часто при анализе МП применяют Y-, Z- , S- и Т-матрицы, а при анализе четырехполюсников, кроме перечисленных, гибридные. А- и Н-матрицы.

Рассмотрим свойства этих матриц. Линейные динамические параметры многополюсника выражают связь токов и напряжений, которые вырабатываются на его входах-полюсах при подключении их к внешним электрическим цепям. Рассмотрим многополюсник (рисунок 2.13) с числом полюсов п, в котором определены токи Ij и напряжение Uj для каждого i-ro входа. Напряжения Uj приложены между зажимами 1-го входа, один из которых представляет общую для входов-полюсов шину. Все токи Ij направлены к многополюснику, а напряжения Us - от активного зажима к общей нулевой шине.

Пусть совокупность полюсных токов представляет вектор столбец I полюсных токов, а совокупность полюсных напряжений - вектор столбец U полюсных напряжений

I=Pr ,L, .In]T, (2.40)

U=[U1, .,Ui, .Un]T. (2.41)

Если считать Uj значения элементов вектора U заданными, значения Ij элемен­тов вектора I искомыми, то Ii можно рассматривать как линейную комбинацию Ub U2,-, Un, т.е.

Тогда компоненты вектора I могут быть выражены в виде системы уравнений

I = YU, (2.45)

где Y - матрица проводимостей.

F

Если теперь считать Ij заданными величинами, а Ц искомыми, то по тем же соображениям U; значение вектора U можно рассматривать как линейную комбина­цию 1Ь I2, .,In, т.е.

Из уравнения (2.46) после несложных рассуждений приходим к матричному уравнению, связывающему компоненты векторов U и I в виде:

U = Z-I, (2.47)

где Z - матрица сопротивлений по форме аналогичная матрице Y.

В САПР электронных схем матрицы Y радиокомпонентов или отдельных схем имеют исключительное значение, так как содержат информацию для расчета электрических схем общепринятым методом узловых потенциалов.

Матрицы Z используются для расчета цепей методом контурных токов. Они находят меньшее применение. Матрицы Y и Z связаны друг с другом уравнением

Y - Z"1, (2.48)

где -1 - знак обращения матрицы

Y и Z - матрицы РК могут быть определены по параметрам эквивалентных схем или путем непосредственного их измерения.

Прямой метод определения Y - матриц производят путем измерения их коэффициентов при реализации опытов короткого замыкания полюсов. Для этого, например, к полюсу i прикладывают напряжение Ц, а остальные полюсы замыкают попарно с общей шиной. Поэтому все напряжения Uj при j i будут равны нулю, а система уравнений (2.46) трансформируется к виду:

Из системы уравнений (2.49) вытекает, что диагональный элемент уц будет определен в виде

Из уравнения (2.50) также следует, что диагональные у и коэффициенты матрицы Y представляют собой входную проводимость многополюсника со стороны полюса i при коротком замыкании остальных полюсов (рисунок 2.14). Таким образом, коэффициент ун может быть определен с помощью измерителя полных проводимостей без каких-либо существенных трудностей.

Из формулы (2.51) также видно, что для определения недиагонального коэффициента Y - матрицы необходимо измерить модуль и фазу переменного тока очередного полюса], который коротко замкнут. Высокочастотные измерители модуля и фазы переменного тока промышленностью не выпускаются. Идентификация таких токов с помощью активных сопротивлений путем измерения модуля и разности фаз переменного напряжения, выделяющегося на этом сопротивлении, не позволяет полностью реализовать опыт короткого замыкания и тем самым приводит к нарушению условий эксперимента.

С другой стороны, в ряде случаев опыты короткого замыкания на выходах реальных многополюсных компонентов могут также привести к искажениям, например, из-за того, что при коротком замыкании выходного полюса режим измеряемого РК принудительно нарушается или вообще не допустим.

Попытка получить более удовлетворительные результаты путем реализации процесса измерения элементов Z-матриц при опытах холостого хода с последующим расчетом Y-матриц по формуле (2.48) нереальна, т.к. в этом случае при измерении на высоких частотах будет существенно проявляться шунтирующее действие входных цепей измерительного прибора, а также в некоторых случаях - цепей электропитания по постоянному току.

В режиме холостого хода многополюсник на рисунке 2.14 преобразуется в многополюсник, показанный на рисунке 2.15.

В режиме холостого хода все токи Ij при j=i, будут равны нулю, а развернутая система уравнений (2.49) трансформируется к виду

u.i-z l,

1 hi

и. =z i

i и i

(2-52)

u. = z i.

j ji i

U = z L.

n m i

Из системы уравнений (2.52) непосредственно получаем формулы для расчета диагональных элементов Z - матрицы

Из формул (2.53) и (2.54) видно, что диагональные zh коэффициенты Z - матрицы представляют собой входное сопротивление многополюсника со стороны полюса i при холостом ходе остальных полюсов (рисунок 2.15). Этот коэффициент может быть определен с помощью измерителя полных сопротивлений. Однако определение недиагональных Zjj коэффициентов на высоких частотах проблематично, во-первых, из-за сложности определения тока I;, во-вторых, из-за неизбежного искажения информации при измерении напряжений Ц при j i, которое возникает из-за шунтирующего действия входной цепи измерительного прибора.

Кроме того, в реальных устройствах режим холостого хода, во-первых, не используется и, во-вторых, может быть не реализуемым, например, из-за возникновения самовозбуждения измеряемого многополюсника (для активных многополюсников).

Рассмотрим определение матриц рассеяния. Физической основой S-параметров являются энергетические отношения между многополюсником и устройствами, подключенными к его входам-полюсам [2, 4]. S-параметры многополюсника позволяют определить обмен энергией между многополюсником, источниками энергии и нагрузками, подключенными к его входам. Аналитическое описание процессов производится посредством векторов падающих а волн, направленных к многополюснику, и отраженных b волн, направленных от него (рисунок 2.16). Волны а и b нормированы таким образом, чтобы выполнялся принцип инвариантности мощности. Поэтому размерность каждой из составляющих векторов а и b выражается в виде корня квадратного уравнения из мощности - (Вт)'/2 . Связь между векторами а и b определяется матрицей рассеяния S, причем матричное уравнение имеет вид

b = Sa . (2.55)

Для линейных активных и пассивных многополюсников существует однозначная аналитическая связь между S-матрицей и матрицами проводимости Y, сопротивления Z и гибридными матрицами. Элементы матриц Y,Z,H, рассчитанные через S-матрицу должны быть при этом также нормированы. В важном для практики случае нормированная Y — матрица связывает вектор нормированных токов I с вектором нормированных напряжений UH.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы