Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов

Именно такой подход реализован в пакете программ PSpice, где библиотека моделей (БМ) представляет собой таблицы исходных данных для расчёта цифровых аналитических макромоделей (ДАМ). Для повышения точности расчёта каждая ЦАМ может быть уточнена путём ввода дополнительных или уточнённых данных для конкретного статического режима или участка частотного диапазона [10].

Основные требования к мо

делям достаточно полно сформулированы в работе [6], а инженерные аспекты их применения, в работах [8,9].

Применительно к САПР электронных схем (ЭС) требования к моделям РК определяют следующие факторы:

- точность (адекватность) соответствия ЦАМ РК реальному образцу РК, которую обычно определяют по степени совпадения параметров ЦАМ и реального РК. Для оценки точности можно использовать или относительное отклонение параметра в рабочем диапазоне частот и режимов электропитания по постоянному и переменному току

О всей схемы. Так, точность машинного расчёта свободно доводится до 10" -10" %, а точность модели в лучшем случае составляет несколько процентов. Таким образом, точность расчёта электрической схемы РЭС практически определяется точностью модели.

Требования к точности модели РК зависят от типа и назначения РЭС. Использование во всех случаях наиболее точных моделей может привести к резкому увеличению времени расчёта, так как обычно чем точнее модель, тем она сложнее. Поэтому для одного и того же РК целесообразно иметь набор моделей, например для резистора такой набор показан на рисунке 2.5. Целесообразность применения каждой из моделей должна быть обсуждена при анализе эквивалентных схем;

- измерительные комплексы для проверки моделей РК на соответствие их параметров паспортным данным, корректировки моделей для режимов, выходящих за рамки паспортных данных с целью возможности расширения области применения конкретного РК, измерения параметров моделей новых РК;

- определение и описание вероятностных характеристик параметров моделей РК. Это требование непосредственно связано с двумя вышеизложенными. Во-первых, точность модели непосредственно связана с вероятностными характеристиками её параметров, так как не имеет смысла достигать точность определения параметров существенно выше, чем разброс этих параметров, во-вторых, получение достоверных вероятностных характеристик модели;

- оценка влияния окружающей среды (температура, влажность и т.п.) для решения задач реального поведения исследуемого РЭС;

- оценка эффектов старения, чтобы получить сведения о надёжности проектируемого изделия, так как без таких оценок может потеряться сам смысл машинного проектирования;

- непрерывность модели, под которой понимают справедливость одной и той же модели для всех режимов работы РК. Непрерывная аналитическая макромодель описывается одним аналитическим выражением, непрерывная графическая модель одной и той же эквивалентной схемой для всех режимов работы РК. В противоположность "кусочная" модель описывается набором формул, каждая из которых соответствует одному из возможных режимов работы РК. Непрерывная модель значительно упрощает программу расчётов, но усложняет процесс её разработки;

- обусловленность модели, под которой понимают малое влияние относительных ошибок расчёта или измерения на измеряемую величину, а также возможность расчёта или измерения самих аргументов модели РК с малой относительной ошибкой. Так, модель транзистора плохо обусловлена, если её аргументом служит напряжение ибэ и хорошо обусловлена, если аргументом служит 1б> так как этот ток можно измерить или рассчитать с меньшей относительной ошибкой, чем напряжение ибэ- Здесь параметры модели сопоставимы с точностью измерений;

- простота модели, так как простая модель более предпочтительна в отношении сокращения времени вычислений.

2.4 Модели ДП

2.4.1 Компонентные модели ДП

ДП представляют собой широкий класс РК, который в самом общем случае можно подразделить на пассивные линейные (резисторы, конденсаторы, катушки индуктивности), нелинейные пассивные (обычные диоды, варисторы, варикапы и т.п.), активные (туннельные диоды, диоды Ганна) и специального назначения (терморезисторы,, тензорезисторы, фоторезсторы, фотодиоды, светодиоды, LC-структуры и т.п.). Особое положение ДП как компонентов РЭС заключается в том, что на их основе моделируют сложные устройства, в том числе и модели более сложных РК. В этой связи адекватное описание моделей ДП имеет определяющее значение.

Модели двухполюсников подразделяют на компонентные в виде эквивалентных схем и факторные [8] аналитические макромодели в виде системы уравнений. Компонентные модели имеют относительно ограниченное применение. К ним относятся R, L, С. компоненты, в которых не учитывают паразитные параметры. Это встроенные модели, номиналы которых задаёт пользователь.

Остальные аналоговые РК, в том числе R, L, С на высоких частотах, рассматривают в виде компонентных (R, L, С) или аналитических (диод, магнитный сердечник) макромоделей. Основой компонентной модели является эквивалентная схема РК, элементы которой определяют физические процессы, проходящие в конкретном РК. При таком моделировании основная проблема заключается в точном определении значений элементов эквивалентной схемы.

Развитие модели резистора в область высоких частот показано на рисунке 2.5, из которого очевидно весьма существенное усложнение модели при переходе в область СВЧ диапазона. Модели конденсатора и кварцевого резонатора также могут, представлены в виде компонентных.

Компонентная модель высокочастотного конденсатора приведена на рисунке 2.7.

Частоты fnocjt последовательного и fnap параллельного резонансов рассчитываются по формулам

При расчёте модели учитывают также (xl температурный коэффициент экви­валентной индуктивности кварцевого резонатора (КР). Остальные параметры (Q, rk, Ck) определяются только типом резонатора и не зависят от частоты.

Типичным представителем нелинейного пассивного ДП является полупроводниковый диод, компонентная схема которого в системе Pspice приведена на рисунке 2.9, где R - объёмное сопротивление; С - ёмкость р-n перехода; I(U) - ток р-n пере­хода; Ud - падение напряжения на диоде; U - парение напряжения на р-n переходе.

Зависимость I(U), определяющая ВАХ диода рассматривают по методике, предложенной Эберсом-Моллом [6] в прямом направлении по формуле

Емкость C(U) рассматривают как функцию напряжения на р-n переходе и представляют в виде суммы барьерной Сб и диффузионной СДИф составляющих

с(и)=С6 + Сдиф, (2.30)

( \~М

C6(U) = CG- 1-— npHU<Fc'Uk ; (2.31)

V Uk )

С,аф(и) = С0-(\-Рс)-(им}- l-Fc(\ + M)+^- npHU>Fc-Uk , (2.32)

U k

где М - коэффициент лавинного размножения;

Fc — коэффициент нелинейности барьерной ёмкости прямосмещённого перехода.

Модель также учитывает явление пробоя и температурные зависимости семи параметров:

Is - тока насыщения;

Tsr - параметра рекомбинации;

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы