Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов

Управление режимом измерения производится программатором П с помощью ключей Kl-КЗ. Соответствующие напряжения регистрируют с помощью ВВ подключённого к выходу ключа КЗ.

Для калибровки устройства в режиме холостого хода первую образцовую меру Z01 подключают между 1 и 3 контактами ДТ и при нормальном положении Kl-КЗ измеряют напряжение С/0, на базовом контакте ДТ. Далее переключатели Kl-КЗ пр

иводят в рабочее состояние. Вторую образцовую меру Z02 подключают к контактам 2 и 3 ДТ и измеряют напряжение t/02 на коллекторном контакте ДТ. Напряжения С701 и С/02 составляют вектор калибровочных напряжений Uk.

Для определения матрицы Y сначала рассчитывают матрицы передачи К0 - холостого хода и К нагруженного режима по формулам

При определении У - матрицы транзистора по формулам (3.7) - (3.11) принципиально исключаются систематические погрешности, вносимые паразитными индуктивностями и ёмкостями измерительных цепей, а также входной цепи ВВ. Также исключаются мультипликативные погрешности, возникающие при измерении модулей комплексных напряжений и аддитивные при измерении разностей их фаз, так как в расчётных формулах используются отношения этих напряжений. Однако возникают определённые сложности при аттестации сопротивления Zn, что вызывает дополнительные погрешности. Эти погрешности можно исключить при применении второго измерительного устройства, структурная схема которого показана на рисунке 3.5.

Устройство на рисунке 3.5 получаем из устройства на рисунке 3.4 путём исключения переключателя КЗ и введения второго ВВ. В этом случае первый ВВ1 и второй ВВ2 векторные вольтметры постоянно подключены к базовой и коллекторной цепям. Поэтому сопротивление Zn каждого из них постоянно входит в состав измерительных цепей и в его аттестации нет необходимости.

Режимы работы первого и второго устройств по постоянному и переменному току полностью идентичны, но во втором устройстве отсутствуют коммутации ВВ. Расчёт Y - матрицы транзистора производят по формулам, полученным из формул (3.7) - (3.11) при Zn -> со.

Тогда коэффициенты матриц К(] и К производят по формулам

Существенный недостаток рассмотренных выше устройств заключается в том, что при измерениях транзисторов средней и большой мощности возникают сложности их электропитания по постоянному току из-за разогрева этих резисторов, особенно коллекторного резистора R5.

Эти недостатки можно исключить путём шунтирования резисторов Ш и 5 катушками индуктивности, как это показано на рисунке 3.6.

Третье измерительное устройство разработано на базе второго. В этом случае резисторы R1 и R5 шунтированы катушками индуктивности II и L2 соответственно. Так как напряжение Uk и напряжение на выходе ИТ равны,

то делитель R4, R6 представилось возможным подключить к выходу ИТ. Тем самым исключено шунтирующее влияние делителя Д4, R6 на коллекторную цепь. Назначение остальных элементов такое же, как и на схемах на рисунках 3.4 и 3.5. Статический режим устанавливается таким же образом как в схемах на рисунках 3.4 и 3.5. Динамические тесты по определению матриц UQ9 U и вектора Uk производятся аналогично тестам устройства на рисунке 3.5. Для расчёта Y - матриц используются формулы (3.7) - (3.13). Индуктивности LI и L2 рассчитывают по формулам

Устройства на рисунках 3.4 - 3.6 позволяют путём реализации активного факторного эксперимента получить информацию для описания ВАХ транзистора в пространстве системы

Анализ схемы рис.3 показывает, что путём её преобразования и при упрощении структуры можно реализовать режим измерения ВАХ в пространстве системы

Us=Ue(le,Uk). (3.16)

В результате получаем четвёртую измерительную схему (рисунокЗ.7). Назначение элементов схемы на рисунке 3.7 кроме источников ИН1, ИН2 и резистора R4 такое же, как и на схеме рисунка 3.5. В процессе работы схемы напряжение на выходе источника ИН2 определяет напряжение uk, источника ИН1 и резисторы R19 R4 вырабатывают ток базы 16. Чтобы схема генерирования тока 1б соответствовала условию источника тока, выбор резистора R4 должен отвечать условию

(R4 + R6)> 100(Д2 R6), (3.17)

где R6 - сопротивление базы по постоянному току.

При выполнении условия (3.17) ток базы будет прямо пропорционален напряжению на выходе ИН1. Таким образом, рабочую точку (ток 1б и напряжение Uk) транзистора будет определять напряжения на выходах ИН1 и ИН2.

Динамические тесты по определению матриц t/0, U и вектора Uk и расчёт Y - матрицы производятся аналогично тестам и расчётам в случае схемы на рисунке 3.6.

В схемах на рисунках 3.4 - 3.7 выделена часть, обозначенная ИГ, представляет собой измерительную головку, которую предлагается конструировать в виде сменного модуля. Принципиальные схемы ИГ в рассмотренных случаях практически одинаковы. Различия будут связаны с конструктивными (типоразмер корпуса, конструкция выводов) и электрическими (мощность, входные и выходные сопротивления) параметрами измеряемых транзисторов, которые будут определять конструкции и номинальные значения элементов ИГ.

Определив часть схемы, кроме ИГ, как базовую получаем возможность широкого маневра, измерительным процессом используя для измерения транзисторов "магазин" ИГ.

Таким образом, в результате анализа структурных схем (рисунки 3.4 -3.7) показано что, во-первых, есть возможность измерения статических и динамических параметров транзистора на одной технологической установке, во-вторых, имеется возможность использования различных вариантов измерительных устройств, в-третьих, целесообразность выделения части измерительной схемы в виде PIT.

Отличительное свойство рассмотренных устройств состоит в том, что они могут быть эффективно использованы в автоматизированных информационно-измерительных системах для измерения параметров моделей, ориентированных на применение в информационных базах данных САПР и диагностику качества радиокомпонентов.

Важным достоинством этих устройств является отсутствие принципиальных ограничений на диапазон частот. Не представляет сложности осуществить измерения на частотах до сотен МГц.

3.4 Структурная схема рабочего места

Структурная схема рабочего места приведена на рисунке 3.8.

Рабочее место состоит из: генератора ВЧ сигнала Г4-116, универсального цифрового вольтметра В7-18, векторного вольтметра ФК2-12, блоков питания (БП) и непосредственно измерительно-контрольного устройства (ИКУ), к которому подключается головка измерительная (ИГ) и плата стабилизации рабочей точки, подключаемая при измерении транзисторов.

Генератором формируется высокочастотный сигнал, который подается через разъем Х2 на плату ИКУ, а оттуда через XI - на ИГ. В7-18 подключен к Х5 и служит для измерения режима работы по постоянному току и преобразования показаний векторного вольтметра ФК2-12. На вход ФК2-12 подается сигнал с Г4-116 и измеряемый сигнал с ИГ. Преобразованные в постоянные напряжения величины сдвига фазы и модуля переменной составляющей передаются на ИКУ, откуда они могут быть скоммутированы на цифровой вольтметр В7-18. Блоки питания обеспечивают схему стабилизированными напряжениями и токами.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы