Системы, эквивалентные системам с известными качественными свойствами решений
Доказательство: Рассмотрим равенство
из условия леммы 5.1. Тогда
.
Поскольку
, то
.
Поскольку функция доопределена до непрерывной дифференцируемости и по лемме 5.2 непрерывно-дифференцируема, то задаваемая выражением удовлетворяет равенствам из условия леммы 5.1.
Лемма доказана.
Теорема 5.4. Если функции и таковы, что выполняются условия
и
,
то уравнение
,
где - нечётная функция, эквивалентно уравнению .
Это следует из теоремы 2 [8]
Следствие 5.1.
Уравнение
эквивалентно уравнению Риккати вида , в котором
, , .
§6. О некоторых аспектах применения отражающей функции для исследования свойств решений дифференциальных систем
Рассмотрим систему
Лемма 6.1. Пусть периодическая дифференциальная система с решением и отражающей функцией эквивалентна в смысле совпадения отражающих функций некоторой дифференциальной системе с решением и отражающей функцией , причём имеет место равенство , а и продолжимы на . Тогда для любого натурального имеет место равенство
Теорема 6.1. Пусть периодическая дифференциальная система с решением эквивалентна в смысле совпадения отражающих функций стационарной системе
с решением . И пусть выполняются следующие условия:
А) верно равенство
Б) ограничено на ;
В) существует число , такое, что неравенство выполняется для всякого натурального ;
Г) все решения системы , для которых верно неравенство , продолжимы на .
Тогда продолжимо и ограничено на .
Доказательство. Докажем сначала продолжимость решения на . Это решение продолжимо на , что следует из условия Г), равенства и условия Б) (при ): . Покажем, что решение продолжимо и на . Заметим, что функция является решением системы и для него выполняются соотношения , справедливость которых следует из основного свойства отражающей функции. Тогда по условию теоремы продолжимо на , т.е. действительно продолжимо на . Индукцией по доказывается, что продолжимо на . В силу произвольности отсюда следует продолжимость на .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах