Примеры решения эконометрических заданий
4. Определим не объясненную сумму квадратов отклонений по формуле:
RSS = Σi = 1n ( yi – y*)2
RSS = 1,882
( yi – y*)2 |
0,277 |
0,212 |
0, 271 |
0,184 |
0,112 |
0,155 |
0,015 |
0,593 |
0,063 |
Σ= 1,882 |
Ответ: 9,202 ;7,316; 1,882
Задача 6.
Вычислить коэффициент детерминации, используя данные из задачи 5
Найти: R-?
Решение:
1. Вычислим TSS и ESS:
TSS = 9,202
ESS = 7,316
2. Найдем R2 по формуле:
R2 = ESS/TSS
R2 = 7,316/9,202
R2 = 0,795
Ответ: 0,795
Задача 7.
Для оценки возможной мультиколлиниарности, рассчитать коэффиц. корреляции между рядами данных (задача 1).
Решение:
1. Найдем Var:
Var(х1) = 9,680
Var(х2) = 0,165
2. Найдем Cov:
Cov(х1;х2) = -0,723
3. Рассчитаем коэффициент корреляции:
r(x1;х2) = Cov(х1;х2)/√ Var(х1)- Var(х2)
r(x1;х2) = -0,723/3,085
r(x1;х2) = - 0,234
Ответ: - 0,234
Задача 8.
Определить несмещенную оценку дисперсии случайного члена регрессии для потребления картофеля.
Найти: Su2(u) - ?
Решение:
1. Найдем RSS:
RSS = 1,882
2. Найдем число степеней выборки
k = n-m-1
k = 9-2-1
k = 6
3. Найдем несмещенную оценку случайного члена:
Su2(u) = RSS/ n-m-1
Su2(u) = 1,882/9-2-1
Su2(u) = 0,3136
Ответ: 0,3136
Задача 9.
Рассчитать стандартные ошибки оценок коэффициента при объясняющ. переменных для модели множеств. регрессии по потреблению картофеля.
Найти: С.О.(b1), C.O.(b2) - ?
Решение:
1. Найдем дисперсию случайного члена:
Su2(u) = 0,3136
2. Найдем Var:
Var(х1) = 9,680
Var(х2) = 0,165
3. Найдем коэффиц. корреляции:
r(x1;х2) = - 0,234
4. Вычислим стандартные ошибки С.О.(b1), C.O.(b2):
С.О.(b1) = (√(Su2(u)/n * Var(х1)) * (1/1- r2 (x1;х2))
С.О.(b1) = (√(0,3136/9*9,680))* (1/1-(- 0,234))
C.O.(b2) = (√(Su2(u)/n * Var(х2)) * (1/1- r2 (x1;х2))
C.O.(b2) = (√(0,3136/9*0,165))* (1/1-(- 0,234))
С.О.(b1) = 0,0486
C.O.(b2) = 0,3724
Ответ: 0,0486; 0,3724.
Задача 10.
Рассчитать статистику Дарбина-Уотсона.
Найти: DW - ?
Решение:
1. Определим остатки в наблюдениях:
ek = yk – y*k; k = (1:n)
y(k) |
15,7 |
16,7 |
17,5 |
18,8 |
18 |
18,3 |
18,5 |
19,1 |
y(k)* |
16,226 |
16,240 |
18,020 |
18,371 |
18,334 |
18,694 |
18,623 |
18,330 |
e(k) |
-0,526 |
0,461 |
-0,520 |
0,429 |
-0,334 |
-0,394 |
-0,123 |
0,770 |
ek-e(k-1) |
-0,987 |
0,981 |
-0,949 |
0,763 |
0,060 |
-0,271 |
-0,893 |
0,519 |
ek-e(k-1)^2 |
0,973 |
0,962 |
0,901 |
0,582 |
0,004 |
0,073 |
0,798 |
0,269 |
e(k)^2 |
0,277 |
0,212 |
0,271 |
0,184 |
0,112 |
0,155 |
0,015 |
0,593 |
(e k-e k – 1) 2= 4,562
e k2 = 1,882
2. Вычислим статистику Дарбина-Уотсона:
DW = Σ (e k-e k – 1)2/ Σ e k2
DW = 2,424
DW > 2
Ответ: т.к. DW > 2, то автокорреляция отрицательная.
Задание 3.2
Задача 1.
Рассчитать выборочное среднее для ряда данных по личным потребительским расходам на косметику (млрд. руб.):
6.3 6.6 6.8 7.0 7.1 7.4 7.9 7.8 7.4
Найти: а
Решение:
1. Запишем формулу: a=1/N*Σ Nt=1*x (t)
2. Вычислим:
а = 1*(5.9 + 6.3 + 6.6 + 6.8 + 7.0 + 7.1 + 7.4 + 7.9 + 7.8 + 7.4)/10
а = 7,02 (млрд. руб.)
Ответ: 7,02 (млрд. руб.)
Задача 2.
Рассчитать выборочную дисперсию по данным задачи 1.
Найти: σ = ?
Решение:
1. а = 7,02
2. Запишем формулу для вычисления дисперсии: σ2 = 1/N*ΣNt=1 x(t)-a
3. Вычислим:
х(t) |
5,9 |
6,3 |
6,6 |
6,8 |
7 |
7,1 |
7,4 |
7,9 |
7,8 |
х(t)-a |
-1,120 |
-0,720 |
-0,420 |
-0,220 |
-0,020 |
0,080 |
0,380 |
0,880 |
0,780 |
(х(t)-a)2 |
1,254 |
0,518 |
0,176 |
0,048 |
0,0004 |
0,006 |
0,144 |
0,774 |
0,608 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели