Примеры решения эконометрических заданий
σ = 3,676
Ответ: 3,676
Задача 3.
Найти оценку ковариации для τ = 0,1,2 (используя данные из задачи 1)
х(t)-a |
-1,120 |
-0,720 |
>-0,420 |
-0,220 |
-0,020 |
0,080 |
0,380 |
0,880 |
(х(t)-a)^2 |
1,254 |
0,518 |
0,176 |
0,048 |
0,000 |
0,006 |
0,144 |
0,774 |
(х(t)-a)* (х(t+1)-a) |
0,8064 |
0,3024 |
0,0924 |
0,0044 |
-0,0016 |
0,0304 |
0,3344 |
0,6864 |
(х(t)-a)* (х(t+2)-a) |
0,4704 |
0,1584 |
0,0084 |
-0,0176 |
-0,0076 |
0,0704 |
0,2964 |
0,3344 |
∑ τ (0) = 3,676
∑ τ (1) = 2,552
∑ τ (2) = 1,313
ρ(τ) = 1/(N- τ)∑t=1N- τ (x(t)-â)* (x(t+1)-â)
ρ (0) = 0,367
ρ (1) = 0,283
ρ (2) = 0,164
Ответ: 0,367; 0,283; 0,164.
Задача 4.
Рассчитать выборочную автокорреляцию для τ = 1,2, используя данные из задачи 1
Найти: r= ? для τ = 1,2
Решение:
1. Найдем τ = 0,1,2
ρ(0) = 0,367
ρ(1) = 0,283
ρ(2) = 0,164
2. Рассчитаем выборочную автокорреляцию для τ = 1,2, по формуле:
r(τ) = ρ (τ)/ τ(0)
r(1) = 0,283/0,367
r(1) = 0,771
r(2) = 0,164/0,367
r(2) = 0,446
Ответ: 0,771; 0,446
Задача 5.
Рассчитать выборочную частную автокорреляцию 1-го порядка, используя данные из задачи 1.
Найти: rчастная (2) = ?
Решение:
1. Найдем выборочную автокорреляцию
r(1) = 0,771
r(2) = 0,446
2. Рассчитаем выборочную частную автокорреляцию 1-го порядка:
rчастная (2) = r(2) – r2 (1)/ 1 - r2 (1)
rчастная (2) = 0,446 – (0,771)2 / 1 - (0,771)2
rчастная (2) = - 0,365
Ответ: - 0,365
Задача 6.
С помощью критерия основанного на медиане, проверить гипотезу о неизменности среднего значения временного ряда:
1 |
6200 |
- |
2 |
6300 |
- |
3 |
6400 |
- |
4 |
6600 |
+ |
5 |
6400 |
- |
6 |
6500 |
не рассматриваем |
7 |
6600 |
+ |
8 |
6700 |
+ |
9 |
6500 |
не рассматриваем |
10 |
6700 |
+ |
11 |
6600 |
+ |
12 |
6600 |
+ |
13 |
6300 |
- |
14 |
6400 |
- |
15 |
6000 |
- |
Решение:
1. Определим число наблюдений: n=15
2. Отранжеруем временные ряды в порядке возрастания:
6000 6200 6300 6300 6400 6400 6400 6500 6500 6600 6600 6600 6600 6700 6700
3. Вычислим медиану:
n = 15;
хмед = n+1/2 = 15+1/2
xмед = 8
xмед = 6500
4. Создаем ряд из + и -, в соответствие с правилом:
если х(i) < хмед , то +; если х(i) > хмед , то -.
5. Определим общее число серий:
v(15) = 6
6. Протяженность самой длинной серии:
τ(20) = 3
7. Проверим неравенства:
v(n) > (1/2*(n+2)-1,96*√n-1)
v(n) = (1/2*(15+2) – 1,96*√15-1)
v(n) = 1,166
6 > 1 – выполняется
τ(n) < (1,43*ln(n+1))
τ(n) < (1,43*ln(15+1))
τ(n) = 3,96
3 < 3,96 – выполняется
Так как выполняются оба неравенства, гипотеза о неизменности среднего значения временного ряда принимается.
Ответ: гипотеза принимается.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели