Примеры решения эконометрических заданий

4. Вычислим Cov: Cov (x,y) = 1 / n Σ ni = 1 * (xi – x)*(yi – y)

(x1-x1)(y-y)

10,651

1,679

-0,873

om >

1,847

1,923

1,549

-0,679

Σ = 17,673

Σ/n = 1,964

(x2 –x2)(y-y)

-1,470

-0,899

0,005

-0,205

-0,206

-0,269

-0,013

Σ = -3,250

Σ/n = -0,361

(x1-x1)(x2 –x2)

-3,405

-1,152

-0,037

-0,415

-0,922

-0,264

0,369

Σ = -6,508

Σ/n = -0,723

Ответ: Var1 = 9,680 Cov1 = 1,964

Var2 = 0,165 Cov2 = -0,361

Var3 = 1,022 Cov3 = -0,723

Задача 2.

Определить коэффициенты при объясняющих переменных, для линейной регрессии, отражающих зависимость потребления картофеля от его производства и импорта, используя данные из задачи 1.

Найти: b1,2 = ?

Решение:

1. Определим Var рядов объясняющих переменных:

Var(х1) = 9,680

Var(х2) = 0,165

2. Определим Cov:

Cov(x1;у) = 1,964

Cov(х2;у) = -0,361

Cov(х1;х2) = -0,723

3. Вычислим b1 и b2 по формулам:

b1 = Cov(x1;у)* Var(х2) - Cov(х2;у)* Cov(х1;х2)/ Var(х1)* Var(х2) – (Cov(х1;х2))2

b2 = Cov(х2;у)* Var(х1) - Cov(x1;у)* Cov(х1;х2)/ Var(х1)* Var(х2) - (Cov(х1;х2))2

b1 = (1,964*0,165) – (-0,361*-0,723)/ (9,680*0,165) - (-0,723)2

b1 = 0,059

b2 = (-0,361*9,680) – (1,964*-0,723)/ (9,680*0,165) - (-0,723)2

b2 = - 1,931

Ответ: 0,059 ; - 1,931

Задача 3.

Рассчитать коэффициент А для регрессии, отражающий зависимость потребления картофеля от его производства и импорта (исп. Данные из задачи 1 и 2)

Найти: а = ?

Решение:

1. определим средние значения:

х1 = 35,767 х2 = 0,414 у = 17,844

2. Определим коэффициенты b1 и b2:

b1 = 0,059 b2 = -1,931

3. Вычислим значение коэффициента а: а = у – b1x1 – b2x2

a = 17,844 - 0,059*35,767 – (-1,931*0,414)

a = 16,533

Ответ: 16,533

Задача 4.

Рассчитать значение личного потребления картофеля, используя полученные в задаче 2 и 3 коэффициенты регрессии.

Решение:

1. Определим коэффициенты b1 и b2:

b1 = 0,059 b2 = -1,931

2. Определим коэффициент а:

а = 16,533

3. Определим вектор регрессионного значения по формуле:

[Х*]= а + b1[x1]+ b2[x2]

 

1

2

3

4

5

6

7

8

9

[Х*]

16,226

16,240

18,020

18,371

18,334

18,694

18,623

18,33

17,748

Задача 5.

Рассчитать общую, объясненную и не объясненную сумму квадратов отклонений для рассчитанной ранее регрессии по потреблению картофеля.

Найти: RSS, TSS, ESS - ?

Решение:

1. Определим средненаблюдаемое у и средне расчетное у* независимых переменных:

Потребление у

15,7

16,7

17,5

18,8

18

19,1

18

Σ = 160,6

Σ/n = 17,84

у*

16,226

16,240

18,020

18,371

18,334

18,330

17,748

Σ= 160,6

Σ/n = 17,84

у = y*

2. Определим общую сумму квадратов отклонений по формуле:

TSS = Σi = 1n ( yi - y)2

TSS = 9,202

( yi - y)2

4,60

1,31

0,12

0,91

0,21

0,43

1,58

0,02

Σ= 9,202

3. Определим объясненную сумму квадратов отклонений по формуле:

ESS = Σi = 1n ( yi – y*)2

ESS = 7,316

( yi – y*)2

2,614

2,571

0,031

0,279

0,241

0,724

0,609

0,237

0,009

Σ= 7,316

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы