Симплексный метод

Задача 1.

Решить задачу линейного программирования симплексным методом.

Вариант 3.

Найти наибольшее значение функции f(X) = - x1 - x2 + 2x3 при ограничениях

2x1 + x2 + x3 £ 2

x1 - x2 + x3 £ 1,

xj ³ 0, j = 1, 2, 3.

Решение.

Приведем задачу к каноническому виду, вводя дополнительные

неотрицательные переменные x4,5 ³ 0.

f(X) = - x1 - x2 + 2x3 ® max

2x1 + x2 + x3 + x4 = 2

x1 - x2 + x3 + x5 = 1,

xj ³ 0, j = 1, 2, 3, 4, 5.

Каноническая задача имеет необходимое число единичных столбцов, т. е. обладает очевидным начальным опорным решением.

Очевидное начальное опорное решение (0; 0; 0; 2; 1).

Решение осуществляется симплекс-методом с естественным базисом. Расчеты оформим в симплекс-таблицах

Номер симплекс-таблицы

Базис

Cj

Ci

B

-1

-1

2

0

0

Q

A1

A2

A3

A4

A5

0

A4

0

2

2

1

1

1

0

2:1 = 1

A5

0

1

1

-1

1

0

1

1:1 = 1

j

-

0

1

1

-2

0

0

 

1

A4

0

1

1

2

0

1

-1

1:2 = 1/2

A3

2

1

1

-1

1

0

1

 

j

-

2

3

-1

0

0

2

 

2

A2

-1

1/2

1/2

1

0

1/2

-1/2

 

A3

2

3/2

3/2

0

1

1/2

1/2

 

j

-

5/2

7/2

0

0

1/2

3/2

 

Начальное опорное решение (0; 0; 0; 1; 1), соответствующее симплекс-таблице 0, неоптимальное, так как в D - строке есть отрицательные значения, наименьшее в столбце А3. Этот столбец будет направляющим. Минимальное положительное оценочное отношение Q в строке А5, эта строка направляющая. Направляющий элемент на пересечении направляющих строки и столбца. Столбец А5 выводим из базиса, а А3 - вводим в базис. После пересчета получаем симплекс-таблицу 1. Соответствующее опорное решение (0; 0; 1; 1; 0) не оптимально, так как в D - строке есть отрицательные значения, в столбце А2.Этот столбец будет направляющим. Минимальное положительное оценочное отношение Q в строке А4. В качестве направляющей строки возьмем А4. Направляющий элемент на пересечении направляющих строки и столбца. Столбец А4 выводим из базиса, а А2 - вводим в базис. Опорное решение, соответствующее симплекс-таблице 2 (0; 1/2; 3/2; 0; 0) - оптимально, так как в D - строке нет отрицательных значений.

Отбрасывая значения дополнительных переменных х4 и х5, получаем оптимальное решение исходной задачи:

х1 = 0, х2 = 1/2 = 0,5; х3 = 3/2 = 1,5; fmax = -1×0 - 1×0,5 + 2×1,5 = 2,5.

Задача 2.

Задание 1. Сформулировать экономико-математическую модель исходной экономической задачи.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы