Математические методы оптимизации
угловая точка соответствует базисному решению
, , ;
угловая точка соответствует базисному решению
, , , ;
угловая точка соответствует базисному решению
, , , ;
угловая точка соответствует базисному решению , , , .
Теперь графически найдём точку четырёхугольника , которая определит оптимальное решение.
Из теорем математического анализа следует, что оптимальное решение следует искать только среди точек границы четырёхугольника . Для её определения в начале координат построим вектор , координаты которого являются рыночными ценами. Прямая проходит через начало координат перпендикулярно вектору . Она определяет все планы, в которых выручка равна 0. Вектор указывает направление возрастания выручки. Если прямую нулевой выручки (розовая линия) перемещать параллельно в направлении вектора , то значение выручки будет увеличиваться. Так как среди внутренних точек четырёхугольника оптимального решения не может быть, то прямую нужно переместить до границы четырёхугольника , т.е. до точки .
Таким образом, точка определяет оптимальное решение. Соответствующее точке базисное решение
является оптимальным решением. Максимальная выручка будет равна . Уравнение определяет уравнение максимальной выручки (верхняя розовая линия).
Задание 2. Двойственная задача
· Записать двойственную задачу и дать её экономический смысл.
· Найти оптимальное решение двойственной задачи.
· Определить целесообразность производства продукции С, для которой на изготовление единицы продукции требуется 60 минут и 50 минут времени изготовления на первой и второй линии соответственно. Рыночная цена составляет 120 ден. ед. за единицу продукции.
РЕШЕНИЕ
Запишем двойственную задачу и дадим её экономический смысл.
Правило построения двойственной задачи состоит в следующем. Каждому равенству прямой задачи соответствует двойственная переменная
Стрелки показывают, что первому равенству соответствует переменная , а второму – переменная .
Для определения целевой функции двойственной задачи двойственные переменные и умножаются на правые части равенств и складываются:
.
Каждой переменной прямой задачи соответствует ограничение двойственной задачи. Левые части этих ограничений для переменной записываются следующим образом. Двойственные переменные и умножаются на коэффициенты перед переменной и складываются: .
Аналогично, записываются левые части ограничений для переменной . Двойственные переменные и умножаются на коэффициенты перед переменной и складываются: . Левая часть ограничений для переменной равна , а для переменной . Правые части ограничений равны коэффициентам 30, 25, 0, 0 целевой функции
перед переменными . Левые и правые части ограничений соединяются знаком .
В результате двойственная задача имеет вид:
найти двойственные переменные и , при которых целевая функция минимальна
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели