Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Для признака Выпуск продукции показатель , следовательно, по данному признаку выборочная совокупность однородна

3в). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируе

тся табл.9 (с конкретными числовыми значениями границ диапазонов).

Таблица 9

Распределение значений признака по диапазонам рассеяния признака относительно

 

Границы диапазонов, млн. руб.

Количество значений xi, находящихся в диапазоне

Процентное соотношение рассеяния значений xi по диапазонам, %

 

Первый признак

Второй признак

Первый признак

Второй признак

Первый признак

Второй признак

А

1

2

3

4

5

6

[3709,01; 5230,99]

[3266,07; 5081,66]

20

19

66,66

63,33

[2948,02; 5991,98]

[2358,27; 5989,46]

28

28

93,33

93,33

[2187,03; 6752,97]

[1450,48; 6897,25]

30

30

100,00

100,00

На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:

68,3% значений располагаются в диапазоне (),

95,4% значений располагаются в диапазоне (),

99,7% значений располагаются в диапазоне ().

Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.

Расхождение с правилом «трех сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон () или значительно более 5% значения хi выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.

Вывод:

Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.

Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.

Задача 4

Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.

Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации Vs признаков.

Вывод:

Так как V для первого признака больше (меньше), чем V для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.

Задача 5

Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.

Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ().

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo, Me) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное распределение является симметричным, и для него выполняются соотношения:

=Mo=Me

Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.

3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хminи хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона () можно судить о соответствии длины «хвостов» распределения нормальному закону.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы