Автоматизированный априорный анализ статистической совокупности в среде MS Excel
Задача 5
Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответст
вия построенной регрессионной модели исходным (фактическим) значениям признаков XиY выполняется в 4 этапа:
1) оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;
3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;
4) оценка погрешности регрессионной модели.
5.1 Оценка статистической значимости коэффициентов уравнения и определение их доверительных интервалов
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi, yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;
– доверительные интервалы коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.
5.1.1 Определение значимости коэффициентов уравнения
Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).
Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.
В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.
Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.
Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками XиY в принципе не может аппроксимироваться линейной моделью.
Вывод:
Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,1061. Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а0 признается типичным (случайным).
Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =0 . Так как он меньше (больше) заданного уровня значимости α=0,05, то коэффициент а1 признается типичным (случайным).
5.1.2 Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Границы доверительных интервалов коэффициентов уравнения
Коэффициенты |
Границы доверительных интервалов | |||
Для уровня надежности Р=0,95 |
Для уровня надежности Р=0,683 | |||
нижняя |
верхняя |
нижняя |
верхняя | |
а0 |
-1548,8999 |
157,7979 |
-1119,9924 |
-271,1096 |
а1 |
0,9012 |
1,2776 |
0,9957 |
1,1830 |
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах -1548,8999 а0 157,7979, значение коэффициента а1 в пределах 0,9012 а1 1,2776. Уменьшение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения.
Определение практической пригодности построенной регрессионной модели.
Практическую пригодность построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:
· близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;
· близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.
Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
Другие рефераты на тему «Экономико-математическое моделирование»:
- Экономико-математические методы
- Исследование издержек предприятия
- Математическое моделирование и оптимизация в химической технологии
- Экономико-математическое моделирование и прогнозирование в спортивной индустрии
- Математическая модель в пространстве состояний линейного стационарного объекта управления
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели