Обработка статистической информации при определении показателей надежности

Допустимый размер - 6,45 мм

1.1 Статистический ряд информации

Статистический ряд информации составляется для упрощения дальнейших расчетов в том случае, если повторность исходной информации N не менее 25.

Для построения статистического ряда вся информация разбивается на n интервалов. Ориентировочно количество интервалов определяется по формуле:

, (1.1)

где n – число интервалов; N – число исследуемых объектов.

Наиболее рациональное количество интервалов, применяемое на практике n=6…14.

Все интервалы должны быть одинаковыми по величине, прилегать друг к другу и не иметь разрывов.

Для нашего случая:

.

Ширина интервала «А» ориентировочно определяется по формуле:

, (1.2)

где tmax – максимальное значение случайной величины;

tmin – минимальное значение случайной величины и округляется до удобной величины.

мм.

Начало первого интервала принимаем t1Н=6,0 мм.

Статистический ряд представляет из себя таблицу из четырех строк (таблица 1.2). В первой строке указываются границы интервалов, во второй – количество случаев попадания случайной величины в каждом интервале (частота) mi , в третьей – опытная вероятность pi случайной величины, в четвертой – накопленная опытная вероятность

Опытная вероятность определяется как отношение числа случаев mi к общему объему информации N. Так, например, опытная вероятность в первом и втором интервалах равна:

; .

Правильность построения статистического ряда может быть проверена по накопленной вероятности.

Для последнего интервала

Таблица 1.2 – Статистический ряд информации

Интервал

6,00-6,16

6,16-6,32

6,32-6,48

6,48-6,64

6,64-6,80

6,80-6,96

Частота mi

3

5

6

7

6

3

Опытная вероятность Pi

0,1

0,17

0,2

0,23

0,2

0,1

Накопленная опытная вероятность ∑Pi

0,1

0,27

0,47

0,7

0,9

1

Середина

6,08

6,24

6,40

6,56

6,72

6,88

1.2 Определение среднего значения и среднеквадратического отклонения показателей надежности

Среднее значение является важнейшей характеристикой показателя надежности. На основании средних значений производится планирование работы машины, определение объемов ремонтных работ, составление заявок на запасные части и т.д.

Точность определения среднего значения возрастает по мере увеличения повторности информации, приближаясь к своему пределу – математическому ожиданию.

При наличии статистического ряда среднее значение показателя надежности определяется по уравнению:

(1.3)

где n – количество интервалов в статистическом ряду;

ti – значение середины i-го интервала;

pi – опытная вероятность i-го интервала.

Средний размер толщины шлиц первичного вала коробки передач, определенный по уравнению 1.3 с использованием статистического ряда будет равен:

.

Среднеквадратичное отклонение s является абсолютной характеристикой рассеивания показателя надежности, позволяющей переходить от общей совокупности к показателям надежности отдельных машин. При наличии статистического ряда информации среднее квадратическое отклонение определяется по уравнению:

(1.4)

Среднеквадратическое отклонение размера толщины шлиц первичного вала коробки передач, определенного по уравнению 1.4, равно:

=0,24 мм.

1.3 Проверка информации на выпадающие точки

Опытная информация по показателям надежности, полученная в процессе наблюдения за машинами в условиях рядовой эксплуатации, может иметь ошибочные точки, выпадающие из общего закона распределения. Причиной появления выпадающих точек могут быть грубые ошибки в измерениях, ошибочные записи и т.д.

Поэтому, перед окончательной математической обработкой, информация должна быть проверена на выпадающие точки. Проверке обычно подвергаются первые и последние точки.

Первый способ проверки информации на выпадающие точки заключается в

проверке по правилу . Так как, при законе нормального распределения 99,7% всех точек находятся в интервале , то все точки, входящие в этот интервал, считаются действительными.

Для рассматриваемого примера границы достоверности точек информации будут соответственно равны:

нижняя граница:

верхняя граница:

Наименьший размер толщины шлиц первичного вала , что больше , следовательно, первая точка информации достоверна и должна учитываться при дальнейших расчетах.

Наибольший размер толщины шлиц первичного вала , что меньше , следовательно, последняя точка информации достоверна и должна учитываться при дальнейших расчетах.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы