Обработка статистической информации при определении показателей надежности

σ – среднее квадратическое отклонение;

π – 3,14;

t – текущее значение показателя надежности.

Интегральное функция или функция распределения F(t) определяется интегрированием функции плотности вероятностей f (t) и имеет вид

. (1.12)

Обе эти функции имеют два параметра: - параметр масштаба и σ – параметр формы. Эти параметры определяются на основании опытной информации. Найденные параметры можно подставить в уравнения 1.11 и 1.12 и использовать ими, но это довольно сложная задача.

Если в уравнении 1.11 значение приравнять к нулю, σ к единице, то получим центрированную и нормированную дифференциальную функцию

. (1.13)

Из уравнений 1.11 и 1.13 соотношение между (t) и (t) имеет вид:

. (1.14)

Из уравнения 1.13 также следует, что

,

где - значение середины i-го интервала статистического ряда.

Центрированная и нормированная интегральная функция (t = 0; σ = 1) определяется по уравнеию:

. (1.15)

Из уравнений 1.12 и 1.15 получим:

. (1.16)

где - значение конца i-го интервала статистического ряда.

Из уравнения 1.15 следует,

(1.17)

При обработке опытной информации установлено:

- средний ресурс =6,49 мм;

- среднее квадратическое отклонение σ = 0,24 мм;

- коэффициент вариации V = 0,42.

Для построения дифференциальной кривой f(t) определяется теоретическая вероятность попадания случайной величины в каждом интервале статистического ряда (таблица 1.2).

Так, вероятность того, что деталь потребует ремонта в первом и втором интервале наработок будет равна:

и т.д. для остальных интервалов.

Результаты расчетов представлены в таблице 1.3.

Для построения интегральной кривой определяются значения функции F(t) для концов интервалов статистического ряда.

Для первого интервала получим:

;

.

Дальнейшие результаты расчетов представлены в таблице 1.3.

Таблица 1.3 – Значения f(t) и F(t) при ЗНР

Интервалы, мм

6,00-6,16

6,16-6,32

6,32-6,48

6,48-6,64

6,64-6,80

6,80-6,96

f(t)

0,061

0,153

0,245

0,243

0,166

0,071

F(t)

0,085

0,239

0,484

0,732

0,902

0,975

Закон распределения Вейбулла (ЗРВ)

Отличительной особенностью закона распределения Вейбулла является правосторонняя асимметрия дифференциальной функции.

Дифференциальная f(t) и интегральная F(t) функции определяются уравнениями:

(1.18)

(1.19)

где а и в – параметры распределения Вейбулла.

Определение параметров "а" и "в" аналитическим путем довольно трудоемко, поэтому на практике при их определении пользуются специальными таблицами.

Порядок определения дифференциальной и интегральной функций при ЗРВ следующий:

1. Определение, на основании опытной информации, среднего значения случайной величины , среднего квадратического отклонения σ и коэффициента вариации.

2. По таблицам по известному значению коэффициента вариации V определяются параметр "в" и коэффициенты Вейбулла Кв и Св .

3. Параметр "а" определяется из выражения:

(1.20)

или

(1.21)

Для рассматриваемого задания по ; ; ; .

Из литературных источников по известному коэффициенту вариации V получим ; Кв=0,887; Св=0,380.

4. Зная параметры "а" и "в" и пользуясь табулированными функциями аf(t) и F(t), можно определить дифференциальную и интегральную функции.

При нахождении функции f(t) для каждого интервала статистического ряда определяется отношение , где tci – середина i-го интервала. По найденному отношению при определенной величине параметра "в" по таблице определяем значение функции аf(tci-tсм), нормированной по "а".

Значение функции f(t) для i-го интервала статистического ряда определится из выражения:

(1.22)

Для нахождения функции F(t) для каждого интервала определяется отношение , где tкi – конец i-го интервала. По найденному отношению и параметру "в" по таблице определяем значение интегральной функции F(tкi – tсм).

Для данного задания значение дифференциальной и интегральной функций при ЗРВ будут равны:

для первого интервала

в=2,5

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы