Обработка статистической информации при определении показателей надежности

где ny – число интервалов укрупненного статистического ряда;

к – число параметров теоретического закона распределения;

1 – связь, накладываемая закономерностью ∑Pi=1.

Для данного примера

Тогда для закона нормального распределения Р(χ2) = 40%, для закона распределения Вейбулла Р(χ2) = 20%.

Приня

то считать, что теоретический закон согласуется с опытным распределением, если Р(χ2)≥10%.

Из проведенной проверки следует, что оба теоретические закона согласуются с опытным распределением, но вероятность совпадения закона нормального распределения несколько выше, чем закон распределения Вейбулла.

1.8 Определение доверительных границ рассеивания одиночного и среднего значений показателя надежности. Абсолютная и относительная предельные ошибки

Доверительные границы рассеивания показателей надежности при использовании закона нормального распределения определяется по формулам:

а) для одиночного значения показателя надежности

; (1.27)

; (1.28)

; (1.29)

, (1.30)

где - нижняя доверительная граница одиночного значения показателя надежности;

- верхняя доверительная граница одиночного значения показателя надежности;

σ – среднее квадратическое отклонение;

- коэффициент Стьюдента определяется по таблице в зависимости от принятой доверительной вероятности α и объема информации N;

- доверительный интервал;

- абсолютная ошибка рассеивания.

б) для среднего значения показателя надежности:

; (1.31)

; (1.32)

; (1.33)

, (1.34)

где - - нижняя доверительная граница рассеивания среднего значения показателя надежности;

- верхняя доверительная граница рассеивания среднего значения показателя надежности;

- абсолютная ошибка рассеивания среднего значения показателя надежности.

Относительная ошибка переноса опытных значений показателя надежности на генеральную совокупность:

(1.35)

Определяем доверительные границы рассеивания одиночного и среднего значений показателя надежности, предварительно задаемся доверительной вероятностью α = 0,95. По таблице определяем значение коэффициента Стьюдента для α = 0,95 и N = 30. Для заданных условий = 2,04. Тогда, по формулам 1.27, 1.28, 1.30 и 1.31 определим:

мм;

мм;

мм;

мм;

Расчет доверительных границ рассеивания при использовании закона распределения Вейбулла ведется от нуля, т.к. кривая распределения в этом случае асимметрична.

Рассеивание одиночных значений показателя надежности определяется по формулам:

, (1.36)

(1.37)

где tн – нижняя доверительная граница;

tв – верхняя доверительная граница;

– нормированная квантиль закона распределения Вейбулла, определяется по таблице из литературных источников для известных значений "в" и ;

а – параметр распределения Вейбулла.

Для определения границ рассеивания среднего значения используются формулы:

, (1.38)

, (1.39)

где – нижняя доверительная граница;

– верхняя доверительная граница;

r1; r3 – коэффициенты Вейбулла, определяются по таблице из литературы;

в – параметр распределения Вейбулла.

При доверительной вероятности α=0,95; =6,49 мм; tсм=5,92 мм; в=2,5; а=0,63 мм доверительные границы рассеивания одиночного и среднего значения определенные по формулам 1.21…1.24 будут равны:

Относительная ошибка рассеивания (переноса) опытных значений показателя надежности на генеральную совокупность:

(1.40)

1.9 Определение минимального числа объектов наблюдения при оценке показателей надежности

Точность определения показателей надежности зависит при прочих равных условиях от объема информации, т.е. от числа испытуемых объектов. Как известно, с увеличением количества испытуемых объектов N доверительные границы сближаются, а абсолютная ошибка уменьшается.

Прежде чем приступить к испытанию, нужно определить количество испытуемых изделий. Для этого задаются определенной доверительной вероятностью α и возможной относительной ошибкой εα.

В условиях производства при испытании на надежность в большинстве случаев задаются доверительной вероятностью α=0,80…0,95 и величиной относительной ошибки εα=10…20%. Количество объектов испытания определяется в соответствии с принятым законом распределения.

При использовании закона нормального распределения, если обе части уравнения 1.34 разделить на среднее значение показателя надежности , получим:

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы