Статистические методы определения экономических показателей

Рассчитаем индекс товарооборота:

или 96, 9%

Товарооборот в целом по данной товарной группе в текущем периоде по сравнению с базисным уменьшился на 3,1 % (100% - 96,9%)

Вычислим сводный индекс цен

или 89,2%

По данной товарной группе цены в сентяб

ре по сравнению с августом в среднем снизились на 10,8%.

3) Рассчитаем индекс физического объема реализации:

или 108,6 %

Физический объем реализации увеличился на 8,6%.

Задача 9

По данным таблицы проведите анализ цен реализации товара в 2-х регионах.

Регион

Август

Сентябрь

Цена руб. (p0)

Продано, шт. (q0)

Цена, руб. (p1)

Продано, шт. (q1)

1

12

10000

13

8000

2

17

20000

19

9000

Итого

х

30000

х

27000

Решение:

Добавим в таблицу расчетные графы

Регион

Август

сентябрь

Расчетные графы

Цена руб. (p0)

Продано, т (q0)

Цена за 1 кг., руб. (p1)

Продано, т (q1)

P0q0

P1q1

P0q1

1

12

10000

13

8000

120000

234000

216000

2

17

20000

19

9000

340000

171000

153000

Итого

Х

30000

х

27000

46000

405000

369000

Вычислим индекс переменного состава.

или 97,8

Рассчитаем индекс структурных сдвигов

или 89,1%

Из данных таблицы видно, что цена в каждом регионе в сентябре по сравнению с августом возросла. В целом же, средняя цена снизилась на 2,2%. (97,8% - 100%). Такое несоответствие объясняется влиянием изменением структуры реализации товаров регионам: в сентябре по более высокой цене продавали товара вдвое больше, в сентябре

Ситуация принципиально изменилась. В целом по полученному значению индекса структурных сдвигов можно сделать вывод, что цены за счет структурных сдвигов цены снизились на 10,9% (100%-89,1%)

Задача 10

По данным таблицы определите среднее линейное отклонение, размах вариации, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Группы работников по стажу, лет

Количество рабочих, чел.

6-10

15

10-14

30

14-18

45

18-22

10

Решение:

Расчетная таблица имеет следующий вид:

Группы работников по стажу, лет

Количество рабочих, чел. (f)

Середина интервала, (х)

хf

½x-`x½

½x-`x½f

(x-`x)2

(x-`x)2f

x2

x2f

6-10

15

8

120

6

90

36

540

64

960

10-14

30

12

360

2

60

4

120

144

4320

14-18

45

16

720

2

90

4

180

256

11520

18-22

10

20

200

6

60

36

360

400

4000

Всего

100

14

1400

16

300

80

1200

864

20800

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы