Статистические методы анализа динамики численности работников
Решение представим в следующей таблице.
Решение в Excel:
Среднегодовой прирост численности
="images/referats/1530/image051.gif"> |
Среднегодовой темп роста численности
Среднегодовой темп прироста численности
За указанные годы наблюдается незначительный рост среднесписочной численности работников: ежегодный рост составляет 11,0 чел. (среднегодовое значение абсолютного прироста) или 0,3% (среднегодовое значение темпа прироста). В итоге, за период с 1999г. по 2004г. рост численности работников составил с 5021,0 чел. до 5067,0 чел. или 1,3%. Прогнозная численность работников: в 2005г. составит 5100,3 чел. с учетом среднегодовых значений абсолютного прироста, в 2006г. – 5113,6 чел.
Графически изобразим динамику среднесписочной численности работников:
Графическое изображение фактического ряда и темпов роста демонстрирует, что отрицательная тенденция наблюдалась лишь в 1999г.- 2000г., но с 2001г. наблюдается резкая положительная динамика среднесписочной численности работников: (бурное оживление), поэтому прогнозирование по среднему темпу прироста может быть неадекватным, скорее требуется подбор кривой роста для более точного прогнозирования численности.
Проведем аналитическое выравнивание уровней ряда
Годы |
Численность, чел. |
Годы |
У |
Х | |
1999 |
5021 |
1 |
2000 |
5013 |
2 |
2001 |
5024 |
3 |
2002 |
5029 |
4 |
2003 |
5065 |
5 |
2004 |
5087 |
6 |
Рассчитаем коэффициент линейной корреляции между переменными:
Значение r = 0,991 показывает, что связь между Y и X весьма тесная.
Значение r > 0 показывает, что связь между Y и X прямая: ежегодно численность работников увеличивается, что говорит о динамичном развитии предприятия.
Примечание: значение "r" можно взять из РЕГРЕССИОННОЙ СТАТИСТИКИ строка "Множественный R"
Построим линейную модель регрессии: Y* = b0 + b1 *X
Параметры линейной регрессии найдем по методу наименьших квадратов.
Примечание: значения "b0" "b1" можно взять из таблицы № 3.
Получим линейный ряд вида:
Y* = |
4990,7 |
+ |
14,029 |
* X |
Значение "b1" = 14,029 показывает, что ежегодно наблюдается рост численности на 14,03 чел.
Осуществим прогноз по данной модели:
Прогноз на 2005г.: Х = 6 + 1 = 7,
Y* = |
4990,7 |
+ |
14,029 |
* 7 = |
5088,9 |
Прогноз на 2006г.: Х = 6 + 2 = 8,
Y* = |
4990,7 |
+ |
14,029 |
* 8 = |
5103,0 |
Рассчитаем параметры регрессии с помощью инструментария Excel (функции "Сервис" и "Анализ данных").
Регрессионная статистика |
Таблица № 1 | ||||
Множественный R |
0,8949 | ||||
R-квадрат |
0,8008 | ||||
Нормированный R-квадрат |
0,7510 | ||||
Стандартная ошибка |
14,6357 | ||||
Наблюдения |
6 | ||||
Таблица № 2 | |||||
Дисперсионный анализ |
df |
SS |
MS |
F | |
Регрессия |
1 |
3444,01 |
3444,01 |
16,08 |
0,00 |
Остаток |
4 |
856,82 |
214,20 | ||
Итого |
5 |
4300,83 | |||
Таблица № 3 | |||||
Коэффициенты |
Стандартная ошибка | ||||
Y-пересечение |
4990,73 |
13,63 |
366,29 | ||
Х1 |
14,03 |
3,50 |
4,01 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели