Статистические методы анализа динамики численности работников
,
где ymax и ymin – максимальное и минимальное значения признака.
чел.
Величина интервала равна 20,0. Отсюда путем прибавления величины интервала к минимальному уровню признака в группе получим следующие группы организаций по среднесписочной численности (
таблица 2.3.).
Таблица 2.3.
№ интервала |
Группа организаций |
Число п/п | |
в абсолютном выражении |
в относительном выражении | ||
1 |
120 - 140 |
2 |
6,7% |
2 |
140 - 160 |
5 |
16,7% |
3 |
160 - 180 |
12 |
40,0% |
4 |
180 - 200 |
7 |
23,3% |
5 |
200 - 220 |
4 |
13,3% |
Итого |
30 |
100,0% |
Данные группировки показывают, что 63,3 % организаций имеют среднесписочную численность работников менее 180 чел.
Мода (Мо) – это значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – это вариант, имеющий наибольшую частоту. В интервальном вариационном ряду мода вычисляется по формуле:
,
где y0 – нижняя граница модального интервала;
h – размер модального интервала;
fMo – частота модального интервала;
fMo-1 – частота интервала, стоящего перед модальной частотой;
fMo+1 – частота интервала, стоящего после модальной частоты.
Отсюда: чел.
Графическое нахождение моды:
Медиана (Ме) – это величина признака, который находится в середине ранжированного ряда, то есть расположенного в порядке возрастания или убывания.
Для интервального вариационного ряда Ме рассчитывается по формуле: ,
где y0 – нижняя граница медианного интервала;
h – размер медианного интервала;
- половина от общего числа наблюдений;
SMe-1 – сумма наблюдений, накопленная до начала медианного интервала;
fMe – частота медианного интервала.
Определяем медианный интервал, в котором находится порядковый номер медианы (n).
В графе «Сумма накопленных наблюдений» таблицы 2.4. значение 15 соответствует интервалу №3, то есть 160 – 180. Это и есть медианный интервал, в котором находится медиана.
Отсюда: чел.
Таблица 2.4.
№ интервала |
Группа п/п |
Число п/п |
Сумма накопленных частот (S) |
Середина интервала, Yi | |
в абсолютном выражении |
в относительном выражении | ||||
1 |
120 - 140 |
2 |
6,7% |
2 |
130 |
2 |
140 - 160 |
5 |
16,7% |
2 + 5 = 7 |
150 |
3 |
160 - 180 |
12 |
40,0% |
7 + 12 = 19 |
170 |
4 |
180 - 200 |
7 |
23,3% |
19 + 7 = 26 |
190 |
5 |
200 - 220 |
4 |
13,3% |
26 + 4 =30 |
210 |
Итого |
30 |
100,0% |
Графическое нахождение медианы:
Рассчитаем характеристики ряда распределения.
Для расчета необходимо определить середины интервалов распределения среднесписочной численности работников (таблица 2.5.).
Таблица 2.5.
Группа организаций |
Середина интервала, Yi |
Число п/п Ni |
Yi * Ni |
Yi - Ycp |
(Yi - Ycp)2 * Ni |
120 - 140 |
130 |
2 |
260 |
-44 |
3872 |
140 - 160 |
150 |
5 |
750 |
-24 |
2880 |
160 - 180 |
170 |
12 |
2040 |
-4 |
192 |
180 - 200 |
190 |
7 |
1330 |
16 |
1792 |
200 - 220 |
210 |
4 |
840 |
36 |
5184 |
Итого |
30 |
5220 |
13920 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели