Радиолокационные установки
2.2.1 Метод Okumura
Этот метод является одним из широко используемых методов для расчета радиолиний в условиях города. Он пригоден для частот 150 - 2000 МГц (хотя может быть экстраполирован до 3000 МГц) и расстояний от 1 до 100 км. Данный метод может быть использован, если эффективная высота подвеса базовой антенны составляет от 30 до 1000 м.
Okumura предложил сетку кривых для ра
счета среднего ослабления относительно ослабления в свободном пространстве Amu в условиях города с квазигладким профилем с изотропной передающей антенной, поднятой на эффективную высоту hte = 200 м и мобильной антенной высотой hre = 3 м. Графики получены в результате многих измерений с ненаправленными антеннами базовой станции и мобильного приемника и представлены в виде графика для диапазона частот 100-1920 МГц как функция дальности от 1 до 100 км.
Для определения потерь на радиолинии рассчитывается ослабление поля в свободном пространстве, затем по кривым графика (рис.13) определяется величина Ama (f,d) и добавляются к ослаблению в свободном пространстве с корректирующей поправкой, зависящей от степени неровности профиля трассы:
, дБ, (2.7)
гдеL50 - средняя величина потерь,
LF - потери в свободном пространстве,
Ama - усредненное дополнительное ослабление, обусловленное влиянием земной поверхности,
G (hte) - эффективное усиление передающей антенны,
G (hre) - эффективное усиление приемной антенны,
GAREA - поправочный коэффициент из графика на рис.14.
Рис.13. Частотная зависимость усредненного ослабления сигнала по отношению к свободному пространству для квазигладкого профиля трассы
Рис.14. Поправочный коэффициент, обусловленный профилем радиотрассы.
Кроме того, Okumura нашел, что величина G (hte) изменяется по закону 20 дБ/декада, а G (hre) для высот менее 3 м - 10 дБ/декада:
,1000 м > h te> 10 м; (2.8а)
,hre < 3 м; (2.8б)
,10 м > hre >3 м. (2.8в)
Модель Okumura полностью построена на экспериментальных данных. Графики, полученные Okumura, можно экстраполировать. Модель Okumura наиболее простая и достаточно точная для расчета потерь в сотовых системах связи и мобильной связи. Она является стандартом при расчете сот для мобильной связи в Японии.
Главный недостаток модели - работа с графиками и невозможность полноценно учесть быстроизменяющиеся условия в профиле трассы.
В основном рассмотренный метод используется для расчета радиолиний в урбанизированных и сверхурбанизированных районах. Разница расчетных и экспериментально измеренных напряженностей поля обычно не превышает 10-13 дБ.
2.2.2 Модель Hata
Hata обработал экспериментальные данные Okumura для частот 150-1500 МГц и предложил рассчитывать потери распространения в условиях города по стандартной формуле с учетом корректирующих уравнений для иных условий.
Стандартная формула для расчета средних потерь мощности в условиях города:
(2.9)
Где fc - частота от 150 до 1500 МГц,
hte - эффективная высота базовой антенны (от 30 до 200 м),
hre - эффективная высота мобильной антенны (от 1 до 10 м),
d - расстояние от передатчика до приемника, км,
a (hre) - корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.
Для небольших и среднего размера населенных пунктов:
. (2.10)
Для крупных городов:
для fc<300 МГц; (2.11a)
для fc>300 МГц. (2.11б)
В сверхурбанизированных районах стандартная (основная) формула Hata (2.9) модифицируется следующим образом:
, дБ, (2.12)
а для открытых районов:
, дБ. (2.13)
Хотя формулы Hata не позволяют учесть все специфические поправки, которые доступны в методе Okumura, они имеют существенное практическое значение. Расчеты по формулам Hata хорошо совпадают с данными модели Okumura для дальностей, больших 1 км.
2.2.3 Уточнение метода Hata
Европейская ассоциация EVRO-COST предложила новую версию метода Hata, верную для частот до 2 ГГц. Стандартная формула для расчета средних потерь мощности в условиях города записывается следующим образом:
, (2.14)
Где a (hre) определяется формулами (2.10) и (2.11),
Gm = 0 дБ для городов средних и крупных размеров,
Gm = 3 дБ для столиц.
Допустимые границы параметров в (2.14): fc1500 . 2000 МГц,
hte30 . 200 м,
hre1 .10 м,
d1. .20 км.
Использование вышезаписанных выражений позволяет рассчитывать широкий класс радиоканалов связи с учетом конкретных условий распространения волн. Выбор конкретной модели, описывающей распространение радиоволн, существенно зависит от частоты несущей, высоты подвеса передающей и приемной антенн, окружающего пространства. Адекватность расчетов и экспериментальных данных определяется корректностью используемых методов, а также сильно зависит от практического опыта специалиста.
3. Программа расчета напряженности электромагнитного поля с учетом затенения зданиями
Термин дифракция, относящийся к теории волновых процессов, имеет довольно широкое значение. Первоначально явлениями называли отклонения свойств света от их идеализированных норм, которые диктуются геометрической оптикой. Свет в определенной степени огибает препятствия, границы света и тени не бывают идеально резкими. Однако, пока размеры рассматриваемых объектов весьма велики по сравнению с длиной волны (d>>λ), что характерно для света, геометрическая оптика остается полезным и часто вполне достаточным инструментом теории. Объекты относительно больших размеров нередки, например, и в антенной технике, но здесь неравенство d>>λ уже не выполняется в столь сильной степени; поэтому отклонения от представлений геометрической оптики существенно сильнее. Наконец, когда размеры объекта сравнимы с длиной волны, геометрическая оптика теряет силу.
3.1 Расчет напряженности в точке приема методом интегрирования
Напряженность поля в плоскости R (рис.3.1) рассчитывается по формуле
, (3.1)
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем