Анализ погрешностей спутниковой радионавигационной системы, работающей в дифференциальном режиме

При этом корреляционной обработке могут подвергаться как непрерывные сигналы, так и дискретные.

Квадратурные составляющие огибающей на выходе согласованного фильтра при оценке времени и частоты (– синфазная, – квадратурная) записываются в следующем виде

width=354 height=120 src="images/referats/15440/image079.png">(2.1)

В этих выражениях: – частота сигнала, на которой производится корреляционная обработка. Для рассматриваемой схемы это третья промежуточная, равная 4 МГц; – модулирующий дальномерный сигнал; – копия дальномерного сигнала, формируемая в АП и сдвигаемая на переменную величину t.

Поиск решения предполагает перебор всех возможных значений из области возможных значений задержек и доплеровских смещений частоты разбивается на небольшие участки. Согласованный фильтр последовательно дискретно перестраивается по множеству возможных значений анализируемых параметров. Для каждой из пар вычисляют и в качестве оптимальной оценки выбирается та пара, которой соответствует максимальное значение . Пара анализируемых параметров образует элементарную ячейку на плоскости поиска. Число ячеек поиска сигнала зависит от максимального доплеровского смещения частоты входного сигнала, составляющего ±5 кГц. Значение элементарной ячейки поиска по частоте определяется полосой захвата схемы частотной автоподстройки и составляет @500 Гц. Поэтому число анализируемых ячеек по частоте равно 20. Значение анализируемой ячейки по задержке сигнала равно длительности элементарного символа дальномерного кода, поэтому для системы «Глонасс» число ячеек равно 511. Соответственно, общее число ячеек поиска составит = 10220. Интегрирование по формулам (9.11) производится на интервале времени, равном периоду дальномерного кода Т = 1 мс. Поэтому, если один канал приёмника производит поиск сигнала одного спутника, то на это тратится время (в наихудшем случае), равное 10,22 с. Современные навигационные приёмники имеют многоканальную структуру, что позволяет использовать одновременно несколько каналов для поиска сигнала одного спутника. Кроме того, в памяти приёмника может храниться информация о параметрах движения спутников (режим так называемого горячего старта), поэтому перед поиском сигнала может быть вычислено приблизительное значение доплеровского сдвига, что существенно уменьшает число анализируемых ячеек .

Значение сравнивается с порогом и принимается решение о наличии или отсутствии сигнала. В том случае, если сигнал не обнаружен, переходят к следующей ячейке. В противном случае, приёмник переходит в режим захвата и непрерывного сопровождения по частоте и задержке. Если следящие системы по задержке и доплеровской частоте успешно захватывают сигнал, то из навигационного вычислителя (процессора) приходит команда о прекращении поиска, а противном случае, процедура поиска продолжается.

Вычисление синфазной и квадратурной производится в корреляторе. Формирование синфазной и квадратурной составляющих I и Q необходимо как в режиме поиска, так и в режиме слежения за параметрами сигнала. В режиме слежения необходимо формировать дискриминационные характеристики для систем слежения за фазой и задержкой сигнала. Если для формирования фазового дискриминатора достаточно иметь интегралы (9.11), то для дискриминатора по задержке сигнала необходимо формировать смещённые на величину составляющие (Е – early – опережающий), (L— late – запаздывающий), и по формулам

(2. 2)

Величина , как правило, равна длительности одного элементарного символа дальномерного кода. На рис. 9.9 показана обобщённая структурная схема стандартного коррелятора. Корреляционные интегралы с выходов накапливающих сумматоров используются в программных алгоритмах процессора для реализации петель слежения за фазой и задержкой сигнала. Кроме того, в опорных генераторах коррелятора (генератор отсчётов промежуточной частоты, генератор дальномерного кода, генератор тактовой частоты дальномерного кода) формируются данные, необходимые для вычисления параметров . Далее эти данные используются в процессоре. На этапе поиска эти данные необходимы для того, чтобы определить «грубые» значения доплеровской частоты и задержки дальномерного кода, необходимые для захвата системами слежения. После захвата сигнала системами слежения эти 'уточнённые' данные используются во вторичной обработке для вычисления псевдодальностей и пседоскоростей.

рис3

Рис. 2.5. Структурная схема одного канала стандартного коррелятора

В литературе довольно подробно описаны алгоритмы работы схем слежения за фазой (ФАП – фазовой автоподстройки частоты) и задержкой (ССЗ – схема слежения за задержкой) сигнала. Каждая из них включает в себя дискриминатор, фильтр и генератор опорного напряжения (для системы ФАП – генератор промежуточной частоты, для системы ССЗ – генератор тактовой частоты дальномерного кода). Часть алгоритма реализуется в аппаратной части приёмника – корреляторе, замыкается контур слежения через программные алгоритмы процессора, который выдаёт в коррелятор управляющие воздействия на генераторы опорных сигналов.

Структура большинства схем корреляторов различных производителей, так или иначе, основывается на классической схеме, изображённой на рис. 2.5. Задача любого коррелятора сводится к тому, чтобы под управлением процессора сформировать корреляционные интегралы по формулам (2.1) и (2.2) и измерительные данные в опорных генераторах.

Навигационный вычислитель решает следующие задачи: цифровая обработка синфазной и квадратурной составляющих I ,Q для поиска сигналов по задержке и частоте, а также слежения за фазой и задержкой сигнала (алгоритмы первичной обработки); преобразование радионавигационных параметров в навигационные (алгоритмы вторичной обработки); демодуляция навигационного сообщения; форматирование и дешифрация эфемеридной информации; расчет прогнозируемых значений ошибок; накопление и хранение альманаха. Навигационному вычислителю переданы также диспетчерские функции управления первичной обработкой, что необходимо из-за наличия многих спутников в зоне видимости и возможности работы по всем или части ИСЗ. В современной и перспективной АП, работающей по сигналам систем ГЛОНАСС и NAVSTAR, возникает дополнительная необходимость управления работой по двум системам.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы