Анализ погрешностей спутниковой радионавигационной системы, работающей в дифференциальном режиме
Будущий: Счет времени () может быть сдвинут в будущее, чтобы компенсировать задержку в линии передачи данных. Этот метод требует точного знания ускорения псевдодальности. Этот метод будет вносить ошибку в поправки, если ускорение псевдодальности значительно изменяется в интервале между временем измерения и прогнозируемым временем.
В этом случае пользователь не способен “убрать” эту ошибку, используя поправки в момент счета времени (). В сценарии, где ускорения являются значительными и хорошо известными, данная техника может повысить точность пользователя в реальном времени.
Метод, выбранный производителем обслуживания, должен удовлетворять требованиям специального обслуживания. Многие приложения, требующие высокой точности, не требуют реального фактического времени для обновления дифференциальных данных GNSS. Способность, близкая к реальному времени (< 30 секунд), может быть удовлетворительной. Метод “Текущий” обеспечивает наилучшие характеристики реального времени без искажения поправок ошибками прогнозирования. Для пользователей реального времени поправки легко пролонгируются вперед на текущее время (t) и пользователи могут получать наилучшую точность в момент счета времени (), близкого к реальному времени.
3.3 Формат сообщений дифференциальных поправок
Чтобы обеспечить общность программного обеспечения пользователя, обеспечить строгую способность выявления ошибки и минимизировать изменения по отношению к версии 2.1 Стандарта, которая относилась только к дифференциальной GPS, формат данных для дифференциальной GNSS был скопирован с формата данных GPS, хотя он и расходится с ним в чем-то, когда возникают другие требования. Однако, размер слова GPS, формат слова, алгоритм четности и другие характеристики сохранены. Наибольшее различие заключается в том, что дифференциальный стандарт использует формат сообщения переменной длины, тогда как формат GPS имеет фиксированную длину подкадров. Сохранение характеристик объясняется следующими причинами [7]:
1) Строгий алгоритм четности требуется для выделения ошибок в данных, не допуская использования неверных поправок, которые могут оказать влияние на безопасность пользователя.
2) Алгоритм четности GPS является общеизвестным и отработанным алгоритмом, с которым пользователи знакомы и который уже закодирован в приемнике пользователя.
3) Алгоритм четности перекрывает границы слова и разрешает знаковую неоднозначность, вносимую двухфазной модуляцией передачи данных.
4) 30-ти битовые слова (когда они сопоставляются с 32-х битовыми словами) в сочетании со скоростью передачи в 50 Гц обеспечивают удобную способность синхронизации, где моменты времени границ слова представляют собой величины, кратные 0.6 секунды. Граница каждого пятого слова совпадает при умножении с 3-мя секундами. Если бы использовались 32-х битовые слова, граница слова попадала бы на целочисленное значение только один раз в 16 секунд.
3.3.1 Общий формат сообщения
Общий формат сообщения показан на рисунке 2.2 с деталями для первых двух тридцатибитовых слов каждой посылки или каждого сообщения. Длина каждой посылки N + 2 слова, где N слова, содержащие данные сообщения. N изменяется в зависимости от типа сообщения, а также от содержания типа сообщения. Размер слова и алгоритм четности идентичны тому, что используется в навигационном сообщении GPS и описано в опубликованном издании Спецификации Сигналов GPS/SPS, документе, который можно приобрести в Информационном Центре GPS Береговой Охраны США.
Первое и второе слова
Первые два слова каждой посылки содержат данные, которые имеют отношение к любому типу сообщения, Данные об опорной станции, опорное время и информация, необходимая для синхронизации посылки пользователем. Их содержание обобщено в Таблице 3.1. Необходимо отметить, что индекс станции относится к идентификации дифференциальных опорных станций. Он не предназначен для идентификации станций линий передачи данных, которые различны для каждого из радиомаяков.
Таблица 3.1 – Состав первого и второго слов
Слово |
Состав |
Чи-сло би-тов |
Коэффициент масштабирования и единицы измерения |
Диапазон |
Первое слово |
Преамбула Индекс кадра/тип сообщения Индекс опорной станции Четность |
8 6 10 6 |
- 1 1 Смотри спецификацию на сигналы GPS/SPS** |
- 1-64* 0-1023 Смотри спецификацию на сигналы GPS/SPS |
Второе слово |
Модифицированный Z-счет Номер последовательности Число слов с данными Состояние станции Четность |
13 3 5 3 6 |
0.6 сек 1 1 слово - Смотри спецификацию на сигналы GPS/SPS** |
0-3599.4с 0-7 0-31 слов 8 состояний Смотри спе-цификацию на сигналы GPS/SPS |
* - 64 обозначается нулями во всех разрядах.
** - Спецификация сигнала стандартного позиционного обслуживания “Глобальной Системы определения местоположения”, которую можно получить из Центра Навигации Береговой Охраны, Александрия VA, 22315 [7].
Синхронизация кадра может быть получена пользователем способом, который подобен применяемому для данных GPS, с отличиями, которые связаны с переменной длиной кадров. Начало первого кадра представляет собой 8-битовую преамбулу, которая отыскивается пользователем. Номера типов сообщений являются теми, которые представлены ниже данной пояснительной записки. Индекс опорной станции является произвольным и устанавливается владельцем опорной станции.
Для передач псевдолитов, модифицированный Z-счет представляет собой время начала следующего кадра (начало преамбулы), а также опорное время для параметров сообщения. Модифицированный Z-счет отличается от Z-счета GPS тем, что LSB (младший значащий бит) имеет коэффициент масштабирования 0.6 сек, вместо 6 сек, для отсчета кадров переменной длины. Это требуется только для сообщений псевдолитов. Кроме того, диапазон Z-счета составляет только один час с целью экономии битов. Причина, лежащая в основе этого, заключается в том, что все пользователи дифференциальной GNSS всегда будут инициализироваться через систему GNSS и им будет известно время. Необходимо отметить, что Z-счет дифференциальной GNSS опирается на время GPS или GLONASS, соответственно для сообщений GPS и GLONASS, а не UTC.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Изучение принципа действия стабилитрона, освоение методики расчета схемы параметрического стабилизатора напряжения
- Исследование характеристик одиночных и связанных колебательных контуров
- Линзовая антенна РЛС и ППФ
- Проектирование локальной вычислительной сети с применением структурированной кабельной системы
- Расчет широкополосного усилителя мощности
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем