Расчет на прочность крыла большого удлинения и шасси транспортного самолета АН–148
получаем длину амортизатора в необжатом состоянии
м.
Длина амортизатора при эксплуатационном обжатии
м.
Определение нагрузок на стойку
Коэффициент расчетной перегрузки:
.
Расчетная вертикальная и горизонтальная нагрузки на стойку равны:
кН;
кН.
Между колесами усилие распределяется в соотношении 316,87 : 210,36, а усилие - 79,22 : 52,81.
Построение эпюр изгибающих моментов
Стойка является комбинированной системой. Вначале методом сечений находим усилие в подкосе. Записываем для стойки уравнение равновесия относительно шарнира
кН
Эпюра изгибающих моментов, действующих в плоскости движения самолёта, изображена на рисунке 23.
Рис.23
Максимальный момент, равный 489,57кНм, действует в точке навески шасси.
Эпюра изгибающих моментов, действующих в плоскости перпендикулярной плоскости движения самолёта, изображена на рисунке 24.
Рис. 24
Скачек на эпюре в точке присоединения стержня к цилиндру, созданный эксцентриситетно приложенной силой (вертикальной проекцией усилия в стержне), равен кНм.
Крутящий момент равен величине
кНм
и нагружает только цилиндр.
Подбор параметров поперечного сечения элементов
В проектировочном расчете для телескопической стойки подбирают толщины стенок цилиндра и штока. Вначале для каждого из указанных элементов выбираем сечение, в котором изгибающий момент имеет максимальное значение. Осевые усилия и крутящий момент в проектировочном расчете не учитываем. Из условия прочности
,
где k – коэффициент пластичности, принимаем ;
W – момент сопротивления
, ;
МПа.
Из этого уравнения находим
.
Зная наружный диаметр штока получим внутренний
м
Тогда толщина стенки .
Аналогично находим значение для цилиндра, но так как наружный диаметр цилиндра неизвестен, то в нулевом приближении принимаем его равным м. Тогда получим
м.
мм.
Построение эпюры осевой силы
Расчетное давление газа в амортизаторе
МПа.
Газ давит на шток с силой
кН.
Несоответствие между силой Рш и внешней нагрузкой 528,127 кН объясняется наличием сил трения в буксах. Таким образом, сила трения в одной буксе равна величине
кН.
На верхнем конце штока газ давит на шток с силой
кН.
Следовательно, между сечениями, проходящими через верхнюю и нижнюю буксы, шток сжимается силой
кН;
ниже сечения нижней буксы – силой
кН.
На цилиндр газ воздействует через уплотнение с осевой силой
кН,
растягивающей цилиндр. При построении эпюры Nц, следует учесть также силы Fтр и Sz. Окончательный вид эпюр осевых сил Nц и Nш показан на рис. 25
Рис. 25
Проверочный расчет штока
Вычисляем напряжение в расчетном сечении по формулам
Вначале находим вспомогательные величины:
F – площадь сечения штока;
W – момент сопротивления штока;
кпл - коэффициент пластичности штока.
Для напряжений получим
- нормальные напряжения, направленные вдоль оси z;
- тангенциальные напряжения разрыва цилиндрических элементов от воздействия внутреннего давления;
- радиальные напряжения в цилиндрических элементах;
- касательные напряжения;
Для более опасного варианта (= - 1296 МПа) имеем эквивалентные напряжения
Коэффициент избытка прочности:
.
Найдем для штока критические напряжения потери устойчивости и предельный изгибающий момент. Из формулы Эйлера
,
R – радиус срединной поверхности цилиндрического элемента;
- толщина цилиндрического элемента.
Так как , то:
- критическое напряжение по формуле Тетмайера.
Так как максимальное сжимающее напряжение σz = 1296 МПа не превышает σкр, то шток не теряет устойчивость.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск