Деятельность Предприятия связи

Рисунок 3.4 - блок-схема модуля SNL

3.1.2 Электропитание модулей

Каждый модуль имеет собственный преобразователь напряжения, который формирует требуемое напряжение. Преобразователь напряжения запитывается от двух независимых батарей. Для устранения паразитных напряжений (шума) и помех каждый модуль содержит фильтр. Для защиты других модулей от импульсов шума при их установке/извлечении

в каждом модуле предусмотрено устройство медленного запуска.

3.2 Синхронный мультиплексор SMA1K

Синхронный мультиплексор SMA1K является частью серии изделий TransXpress. Он относится к третьему поколению семейства устройств SDH2 SMA1K.

Синхронный мультиплексор SMA1K используется для линейных потоков на уровне STM-1 (155 Мбит/с) SDH-иерархии.

Помимо мультиплексирования и демультиплексирования полезной нагрузки (PDH) и сигналов заголовка (включая требуемые процедуры упаковки и распаковки), синхронный мультиплексор SMA1K выполняет следующие функции:

- обеспечение линейных окончаний,

- установление соединений,

- текущий контроль,

- операции коммутации во встроенном кросс-соединении,

- доступ к заголовку.

Синхронный мультиплексор SMA1K может быть оборудован следующими интерфейсами данных пользователей (линейный и трибутарный поток):

Таблица 3.2 - линейные интерфейсы

Иерархия

Скорость передачи информации

Соединение

SDH

155 Мбит/с (STM-1)

оптическое

Таблица 3.3 - трибутарные интерфейсы

Иерархия

Скорость передачи информации

Соединение

PDH

2 Мбит/с

электрическое

PDH

34 Мбит/с

электрическое

Синхронный мультиплексор SMA1K выполняет передачу потоков синхронной цифровой иерархии (SDH) и плезиохронной цифровой иерархии (PDH).

На рисунке 3.5 показаны организация и связь структур мультиплексирования SDH и PDH, а также их соединения друг с другом (приводятся только те тракты, которые являются возможными в SMA1K).

Рисунок 3.5 - структуры мультиплексирования SDH и PDH

3.2.1 Рабочие характеристики

• Версии устройств:

- Мультиплексоры с функцией вставки/вывода

- Оконечные мультиплексоры

• Возможные соединения:

- Трибутарная сторона «-» Линейная сторона

- Линейная сторона «-» Линейная сторона

• Внутренние уровни передачи:

- TU-3

- TU-12

• Пропускная способность соединения имеет значение, эквивалентное ЗхЗТМ-1 (189хVС12,двунаправленн.)

• Неблокирующее коммутационное поле

• Возможные типы передачи:

- однонаправленная передача (с переключением или без переключения на резерв)

- двунаправленная передача (с переключением или без переключения на резерв)

- Закольцовывания

- Широковещательная передача

- Выделение и продолжение

• Возможна синхронизация посредством различных информационных потоков (2 Мбит/с, STM-1), внешних тактовых сигналов (2 кГц) или внутренних высокоточных кварцевых осцилляторов

• Ресинхронизация исходящих потоков 2 Мбит/с с целью обеспечения высокоточной синхронизации удаленных блоков из SDH-сети

• Принцип текущего контроля согласно Рекомендации ITU-T G.784, основанный на ETS300417

Могут использоваться следующие средства отображения аварийных сигналов и сообщения об ошибках:

- Светодиодные индикаторы

- Аварийные сообщения Bw7R

- Сообщения через интерфейсы Q-F, QD2F и QD2B в терминалы LCT или NCT (локальный или глобальный) и в систему управления сетью

- Контроль плезиохронного соединения (PCS) для входящих PDH-потоков 2 Мбит/с

• Интерфейсы для локального терминала пользователя (LCT) (интерфейсы QD2F или QD2B) или сетевого терминала пользователя (NCT) (интерфейс QD2B) и для системы управления сетью (QD2B3)

• Возможность ввода идентификатора потока TTI (идентификатор трассировки трейла) в виртуальные контейнеры VC-12 и VC-3 (текущий контроль ТТI и содержание идентификатора трассировки трейла (ТТI) могу конфигурироваться отдельно для каждого виртуального контейнера (VC)). После получения соответствующего потока можно сравнить полученный в сигнал идентификатор трассировки трейла (ТТ1) с ожидаемым ТТ1.

• Возможность ввода метки потока в трейле (TSL) в виртуальные контейнеры VC-12 и VC-3 (текущий контроль TSL и содержание TSL может конфигурироваться отдельно для каждого виртуального контейнера (VC)). После получения соответствующего потока можно сравнить содержащуюся в нем метку TSL с ожидаемой меткой TSL.

• Индивидуальная загрузка программного обеспечения в каждый модуль

• Функции управления согласно соответствующим Рекомендациям ITU-T:

- Управление устранением отказов

- Управление конфигурацией

- Управление рабочими параметрами

- Управление защитой.

В частности, к этим функциям относится:

- Обработка аварийных сигналов (например, AIS, RDI) с целью локализации неправильных установок в сети передачи

- Определение местоположения неисправностей до уровня компонентов (например, местоположение неисправного модуля или неправильно выполненной функции)

- Управление данными конфигурации и их сохранение для последующего использования системой управления сетью, терминалами LCT или NCT

- Определение рабочих параметров согласно Рекомендации ITU-T G.826 для линейных и трибутарных потоков

• Опции переключения на резерв:

- Переключение на резерв соединения подсети с текущим контролем тракта (SNC/P) (переключение на резерв трактов низкого порядка по схеме 1+1)

- Переключение на резерв типа MSP по схеме 1+1 (в качестве оконечного мультиплексора)

• Резервирование плат:

Совместно с SNC/P в ADM или MSP в ТМХ (необязательн.)

• Автоматическое конфигурирование после замены модуля, если вновь установленный модуль не содержит последние данные конфигурации

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы