Деятельность Предприятия связи
Рис.1.5 Линейные коды ВОСП
Для снижения содержания в спектре сигналов низкочастотных компонент применяют манчестерский, или бифазный, код BIF, в котором “0” передается последовательностью из паузы и импульса, а “1” - последовательностью из импульса и паузы, причем длительность импульса в 2 раза меньше длительности “1” (рис.1.5в). В данном коде отсутствует подряд более чем два идентичных с
имвола, что определяет снижение в спектре низкочастотных компонент. Такой код также целесообразен при передачи в линиях малой протяженности без регенераторов и является примером 1B2B-сигнала.
Алгоритм образования кода 2B3B следующий: разряды 00 заменяются на 001; 01 на 010; 10 на 100 и 11 на 011. Такой код обеспечивает возможность снижения скорости передачи в линии по сравнению с 1B2B-сигналами.
К общим недостаткам рассмотренных кодов относятся следующие: невысокая помехозащищенность, сложности с выделением тактовой частоты, а также с обнаружением ошибки. По этой причине коды не могут быть рекомендованы для организации линейного тракта ВОСП большой протяженности. Введение корреляционных связей между амплитудами передаваемых двух уровневых сигналов позволяет устранять отмеченные недостатки.
В цифровых ВОСП для первичной ступени ИКМ иерархии целесообразно использовать код CMI; для вторичной - CMI и BIF; для третично - BIF и код Миллера; для более высоких ступеней - код Миллера и скремблированный бинарный сигнал в формате NRZ.
Использование многоуровневых кодов по сравнению с двух-уровневыми на городских, зоновых и магистральных сетях связи приводит к снижению энергетического потенциала системы на 15 . 20 дБ. Поэтому многоуровневые коды рекомендуется использовать во внутриобъектовых линиях связи специального назначения.
1.4 Синхронная цифровая иерархия
1.4.1 Принципы временного уплотнения
Существует два основных способа временного уплотнения или мультиплексирования:
1. Плезиохронное уплотнение: Данный способ допускает некоторую гибкость в синхронизации. Синхронизация источников и мультиплексоров может выполняться локально. Проблемы связанные с рассинхронизированностью решаются методом согласования скорости передачи.
2. Синхронное уплотнение: Это иной способ. Синхронизация источников сигналов и мультиплексоров, в принципе осуществляется от центрального источника синхронизации. Преимущество такого метода заключается в том. что информация любого канала может быть немедленно помещена внутрь временного кадра (слота) в любом месте сети. Это позволяет быстро и гибко маршрутизировать и объединять в пакеты каналы.
1.4.2 Общие понятия об SDH
SDH – это аббревиатура от английского «Synchronous Digital Hierarcchy» – Синхронная цифровая иерархия.SDH – это способ временного уплотнения сигналов, согласно которому цифровые потоки более низкой скорости:
1544 Кбит/с
2048 Кбит/с
6312 Кбит/с
34368 Кбит/с
139264 Кбит/с
объединяются, уплотняются во времени и определенным способом размещаются внутри одного высокоскоростного цифрового потока
155,52 Мбит/с для STM1
622,088 Мбит/с для STM4
2488,320 Mбит/с для STM16
Поток STM1 объединяет 63 2 Мбит/с потоков. Поток STM4 объединяет 256 2 Мбит/с потоков или четыре плезиохронных потока 39264 Кбит/с. Поток STM16 объединяет 4 потока STM4.
1.4.3 Структура кадра SDH
SDH структура квантована по времени на единицы (кадры) длительностью 1/8000 секунды, т.е. 125 мксек. Каждый кадр SDH представляет из себя «контейнер» куда может «складываться информация от более низкоскоростных цифровых потоков».
Структура кадра STM-1 приведена на рисунке 1.7
1. Pay load – область, где размещается информация, поступающая во входных потоках низшего уровня. Т.е. полезная нагрузка.
2. RSOH – служебная информация, формируемая внутри самой системы передачи и предназначенная для мультиплексоров, работающих в режиме регенератора.
3. MSOH – служебная информация, формируемая внутри самой системы передачи и предназначенная для мультиплексоров, работающих в режиме ввода/вывода.
4. Pointer- указатель – информация по которой система определяет место (адрес) начала так называемого «Виртуального контейнера VC4» внутри области Pay load.
Области RSOH и MSOH называются «Заголовком секции».
RSOH | |
Сукция регенератора |
Область размещения полезной нагрузки. |
(3х9=27 байт) |
Pay load. |
Pointer Указатель 9 байт | |
9- Рядов. 261 – Колонка. | |
MSOH | |
Секция мультиплексора |
(9х261=2349 байт) |
(5х9=45 байт) |
Рис. 1.7 Структура кадра STM-1
На рис. 1.8 представлен отдельно «Заголовок секции».
RSOH
A1 |
A1 |
A1 |
A2 |
A2 |
A2 |
C1 |
NU |
NU |
B1 |
E1 |
F1 | ||||||
D1 |
D2 |
D3 |
MSOH
B2 |
B2 |
B2 |
K1 |
R2 | ||||
D4 |
D5 |
D6 | ||||||
D7 |
D8 |
D9 | ||||||
D10 |
D11 |
D12 | ||||||
Z1 |
Z1 |
Z1 |
Z2 |
Z2 |
Z2 |
E2 |
NU |
NU |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем