Моделирование текста задачи как средство развития математического мышления младших школьников
б) Ознакомление с решением задач.
На этой второй ступени обучения решению задач дети учатся устанавливать связи между данными и искомым и на этой основе выбирать арифметические действия, то есть они учатся переходить от конкретной ситуации, выраженной в задаче к выбору соответствующего арифметического действия. В результате такой работы учащиеся знакомятся со способом решения задач рассматр
иваемого вида.
В методике работы на этой ступени выделяются следующие этапы:
1 этап – ознакомление с содержанием задачи;
2 этап – поиск решения задачи;
3 этап – выполнение решения задачи;
4 этап – проверка решения задачи.
Выделенные этапы органически связанны между собой, и работа на каждом этапе ведется на этой ступени преимущественно под руководством учителя.
1. Ознакомление с содержанием задачи. Ознакомится с содержанием задачи – значит прочитать ее, представить жизненную ситуацию, отраженную в задаче. Читают задачу, как правило, дети. Учитель читает задачу лишь в тех случаях, когда у детей нет текста задачи или когда они еще не умеют читать. Очень важно научить детей правильно читать задачу: делать ударение на числовых данных и на словах, которые определяют выбор действий, таких как «было», «убрали», «осталось», «стало поровну» и т.п., выделять интонацией вопрос задачи. Если в тексте задачи встретятся непонятные слова, их надо пояснить или показать рисунки предметов, о которых говорится в задаче. Задачу дети читают один – два, а иногда и большее число раз, но постепенно их надо приучать к запоминанию задачи с одного чтения, так как в этом случае они будут читать задачу более сосредоточенно.
Читая задачу, дети должны представлять ту жизненную ситуацию, которая отражена в задаче. С этой целью полезно после чтения предлагать им представить себе то, о чем говорится в задаче, и рассказать, как они представили.
2. Поиск решения задачи. После ознакомления с содержанием задачи нужно приступить к поиску ее решения: ученики должны выделить величины, входящие в задачу, данные и искомые числа, установить связи между данными и искомыми и на этой основе выбрать соответствующие арифметические действия.
При введении задач нового вида поиском решения руководит учитель, а затем учащиеся выполняют это самостоятельно.
В том и другом случае используются специальные приемы, которые помогают детям вычленить величины, данные и искомые числа, установить связи между ними. К таким приемам относятся иллюстрация задачи, повторение задачи, разбор и составление плана решения задачи.
Рассмотри каждый из этих приемов.
Иллюстрация задачи – это использование средств наглядности для вычисления величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними. Иллюстрация может быть предметной или схематичной. Предметная иллюстрация помогает создать яркое представление той жизненной ситуации, которая описывается в задаче. Ею пользуются только при ознакомлении с решением задач нового вида и преимущественно в 1 классе. Для иллюстрации задачи используются либо предметы, либо рисунки предметов, о которых идет речь в задаче: с их помощью иллюстрируется конкретное содержание задачи.
Наряду с предметной иллюстрацией, начиная с 1 класса, используется и схематическая – это краткая запись задачи.
В краткой записи фиксируются в удобообразной форме величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т.п. и слова, означающие отношения: «больше», «меньше», «одинаково» и т.п.
Краткую запись задачи можно выполнять в таблице и без нее, а так же в форме чертежа. При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей, между величинами: на одной строке записываются соответствующие значения различных величин, а значения одной величины записываются одно под другим. Искомое число обозначается вопросительным знаком. Многие задачи можно иллюстрировать чертежом. Иллюстрирование в виде чертежа целесообразно использовать при решении задач, в которых даны отношения значений величин («больше», «меньше», «столько же»). Одно из чисел данных в задаче (число детей, число метров в материи) изображают отрезком, задав определенный масштаб (без употребления этого слова) и используя данные в задаче соотношения этого числа и других чисел, изображают эти числа (в 2 раза больше, на 4 кг меньше) соответствующим отрезком.
Задачи, связанные с движением, также можно иллюстрировать с помощью чертежа.
Используя иллюстрацию, ученики могут повторить задачу. При повторении лучше, чтобы дети объясняли, что показывает каждое число и что требуется узнать в задаче.
При ознакомлении с задачей нового вида, как правило, используется какая- либо одна иллюстрация, но в отдельных случаях полезно выполнить предметную и схематичную иллюстрацию.
В процессе выполнения иллюстрации некоторые дети находят решение задачи, то есть они уже знают, какие действия надо выполнить, чтобы решить задачу. Однако часть детей может установить связи между данными и искомыми выбрать соответствующее арифметическое действие только с помощью учителя. В этом случае учитель проводит специальную беседу, которая называется разбором задачи.
Рассуждение можно строить двумя способами: идти от вопроса задачи к числовым данным или же от числовых данных идти к вопросу.
Чаще следует использовать первый способ рассуждения, так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом. При использовании второго способа разбора учитель прямо подводит их к выбору каждого действия. Кроме того, такое рассуждение может привести к выбору «лишних действий».
Разбор составной задачи заканчивается составлением плана решения – это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.
Решение задачи – это выполнение арифметических действий, выбранных при составлении плана решения. При этом обязательны пояснения, что находим, выполняя каждое действие. Надо учить детей правильно и кратко давать пояснения к выполняемым действиям.
Решение задачи может выполняться устно и письменно.
В начальных классах могут быть использованы такие основные формы записи решения:
Составление по задаче выражения и нахождение его значения;
Запись решения в виде отдельных действий с пояснением или без них;
С вопросами;
Проверка решения задач. Проверить решение задачи – значит установить, что оно правильно или ошибочно.
В начальных классах используются следующие четыре способа проверки:
Составление и решение обратной задачи. В этом случае детям предлагается составить задачу, обратную по отношению к данной: то есть преобразовать данную задачу так, чтобы искомое данной задачи стало данным числом, а одно из данных чисел стало искомым. Если при решении обратной задачи в результате получится число, которое было известно в данной задаче, то можно считать, что данная задача решена правильно.
Другие рефераты на тему «Педагогика»:
- Разработка учебно-методических рекомендаций по моделированию одежды для студентов направления "Технологическое образование"
- Активное социально-психологическое обучение в ВУЗе
- Учёба и труд, их место в психическом развитии младшего школьника, новообразования младшего школьного возраста
- Развитие критического мышления учащихся в процессе обучения физике
- Педагогические взгляды восточных мыслителей Средневековья
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения