Моделирование текста задачи как средство развития математического мышления младших школьников
Эта задача включает две простых:
В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько мальчиков дежурило в школе?
В школе дежурили 8 девочек и 10 мальчиков. Сколько всего детей дежурило в школе?
Как видим, число, которое было искомым в первой задаче, стало данным во второй.
Последовательное решение этих задач является решением составной задачи: 1)8 + 2=10; 2)8+10=18.
>Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.
Запись решения многих составных задач и составление по ним выражения связаны с использованием скобок. Скобки — математический знак, употребляемый для порядка действий. В скобки заключается то действие, которое нужно выполнить раньше.
В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которым вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи .
Общепризнанно, что для выработки у учащихся умения решать задачи, важна всесторонняя работа над одной задачей, в частности, и решение её различными способами. Следует отметить, что решение задач различными способами позволяет убедиться в правильности решения задачи даёт возможность глубже раскрыть зависимости между величинами, рассмотренными в задаче. Возможность решения некоторых задач разными способами основана на различных свойствах действий или вытекающих из них правил. При решении задач различными способами ученик привлекает дополнительную информацию, поскольку он непроизвольно выполняет в большем числе выборы суждений, хода мысли из нескольких возможных; рассматривается один и тот же вопрос с разных точек зрения. При этом полнее используется активность учащихся, прочнее и сознательнее запоминается материал. Как правило, различными способами решается те из задач, где этого требует вопрос, поэтому такая работа носит эпизодический характер.
В качестве основных в математике различают арифметический и алгебраический способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами. Арифметические способы решения задач отличаются друг от друга одним или несколькими действиями или количеством действий, также отношениями между данными, данными и искомым, данными и неизвестным, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.
При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.
В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи. Но надо отметить, что в начальных классах алгебраический способ не применяется для решения задач.
Опираясь только на чертёж, легко можно дать ответ на вопрос задачи. Такой способ решения называется графическим. До настоящего времени вопрос о графическом способе решения арифметических задач не нашёл должного применения в школьной практике. Графический способ даёт возможность более тесно установить связь между арифметическим и геометрическим материалами, развить функциональное мышление детей.
Следует отметить, что благодаря применению графического способа в начальной школе можно сократить сроки, в течение которых ученик научится решать различные задачи. В то же время умение графически решать задачу — это важное политехническое умение.
Графический способ даёт иногда возможность ответить на вопрос такой задачи, которую дети ещё не могут решить арифметическим способом и которую можно предлагать во внеклассной работе.
Решение задач различными способами — дело непростое, требующее глубоких математических знаний, умения отыскивать наиболее рациональные решения.
В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач называются задачами одного вида Работа над задачами не должна сводится к натаскиванию учащихся на решение задач сначала одного вида, а затем другого и т.д. Главная ее цель – научить детей осознано устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:
Подготовительную работу к решению задач;
Ознакомление с решением задач;
Закрепление умения решать задачи
а) Подготовительная работа к решению задач
На этой ступени обучения решению задач того или другого вида должна быть создана у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения простых задач ученики усваивают знание следующих связей:
Связи операций над множествами с арифметическими действиями, то есть конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения; если имеем 4 и 2 флажка, то чтобы узнать, сколько всего флажков, надо к 4 прибавить 2;
Связи отношений «больше» и «меньше» (на сколько единиц и в несколько раз) с арифметическими действиями, то есть конкретный смысл выражений «больше на…», «больше в … раз», «меньше на…», «меньше в … раз». Например, больше на 2, это столько же и еще 2, значит, чтобы получить на 2 больше, чем 5, надо к 5 прибавить 2.
Связи между компонентами и результатами арифметических действий, то есть правила нахождения одного из компонентов арифметических действий по известному результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания. Из суммы вычитают известное слагаемое.
Связи между данными величинами, находящихся в прямо или обратно пропорциональной зависимости, и соответствующими арифметическими действиями. Например, если известна цена и количество, то можно найти стоимость действием умножения.
Кроме того, при ознакомлении с решением первых простых задач, ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи). Подготовкой к решению составных задач будет умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи. При работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.
Другие рефераты на тему «Педагогика»:
- Система социальной работы
- Управление процессом довузовского образования
- Роль семьи в обучении и воспитании детей с нарушениями речи
- Психологический анализ особенностей личности учителей с разными стилями педагогического общения
- Социально-воспитательная деятельность музея в условиях школы в работе со старшеклассниками
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения