Обучение построению и использованию компьютерных моделей в базовом курсе информатики
2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.
3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируютс
я на языке, принятом в данной области.
4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.
5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.
Классифицировать математические модели можно по различным критериям. Например, по характеру решаемых проблем модели могут быть разделены на:
функциональные;
структурные.
В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие – как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т.д.), устанавливающих количественные зависимости между рассматриваемыми величинами.
Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф – это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).
По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.
Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий:
Линейные или нелинейные модели;
Сосредоточенные или распределённые системы;
Детерминированные или стохастические;
Статические или динамические;
Дискретные или непрерывные;
и так далее.
Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.
Линейные модели – все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае
В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.
Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической. Возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом – распределённые модели и т.д.
Компьютерное математическое моделирование
Каким образом происходит построение математической модели?
Во–первых, формулируется цель и предмет исследования.
Во–вторых, выделяются наиболее важные характеристики, соответствующие данной цели.
В–третьих, словесно описываются взаимосвязи между элементами модели.
Далее взаимосвязь формализуется.
И производится расчет по математической модели и анализ полученного решения.
Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.
Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.
Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– известна цель (или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:
сложная система содержит много связей между элементами;
реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен;
возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.
В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование «Simujation modeling».
Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.
Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?
Большая близость к реальной системе, чем у математических моделей;
Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;
Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.
Перечисленные достоинства определяют недостатки
построить имитационную модель дольше, труднее и дороже;
для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;
взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;
построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.
Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.
Таким образом, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.
Другие рефераты на тему «Педагогика»:
- Особенности внимания у детей с задержкой психического развития
- Половое воспитание подростков
- Современные формы работы классного руководителя с родителями
- Методика обучения дошкольников рисованию животных
- Характеристика личностей Конфуция, Макаренко и Пирогова с позиции их пригодности к педагогической деятельности
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения