Применение занимательного задачного материала для активизации познавательной деятельности учащихся при обучении решению текстовых задач
Решение: Имение нужно разделить между сыном, женой и дочерью пропорционально числам 4:2:1 (1 - так как дочери достанется в 2 раза меньше чем матери, 2 – так как матери достанется в 2 раза меньше чем сыну, а сыну - следовательно 4, так как у сына по условию в два раза больше чем матери). Меньше всего дочке (1 доля), потом маме (2 доли), а потом сыну (4 доли), значит всего долей 7, получается так
: , , .
2. Задачи, решение которых может быть осуществлено с конца
Учащиеся должны уметь:
· те же пункты что и в первом разделе;
· приводить дроби к общему знаменателю;
· находить дробь от числа и число по его дроби.
Эти задачи могут применяться на уроках итогового повторения в 6 -8 классах. Задачи такого характера заставляют учащихся искать нестандартные пути решения, развивают мышление и интерес к предмету.
1. Назови мне число, которое, умноженное на три, сложенное с произведения, разделенное на 7, уменьшенное на частного, уменьшенного на само себя, уменьшенное на 54, после извлечения квадратного корня, прибавления 8 и деления на 10 будет равняться 2.
Решение: Индийские математики пользовались арифметическим приемом, который они широко применяли. Это – «правило обращения», или «правило инверсии». Суть его заключается в следующем: если нужно найти число, которое после ряда операций приводит к некоторому известному числу, то для этого необходимо над этим последним числом произвести в обратном порядке все обратные операции.
Решение данной задачи заключается в том, что, начиная с числа 2, производят обратные действия в обратном порядке:
Число 28 и есть искомое.
2. Найти число, которое, будучи умножено на 3, а затем разделено на 5, увеличено на 6, после чего из него извлечен корень квадратный, отнята единица и результат возведен в квадрат, дает 4.
Решение:
Следуя «правилу обращения», получим:
; 2+1=3; 32=9; 9-6=3; ;
Число 5 и будет искомым. «Правило обращения», которым пользовались индийские ученые, стало широко известно и за пределами Индии. Позднее им стали пользоваться сначала в странах Арабского халифата, а потом и в Европе.
3. Французская задача XVII в.
Трое имеют по некоторой сумме денег каждый. Первый дает из своих денег двум другим столько, сколько есть у каждого. После него второй дает двум другим столько, сколько каждый из них имеет. Наконец, и третий дает двум другим столько, сколько есть у каждого. После этого у всех троих, оказывается, по 8 экю. Спрашивается, сколько денег было у каждого вначале.
Рассуждения удобно начать с конца и решение представить в виде следующей таблицы:
I |
8 |
|
|
|
II |
8 |
|
|
|
III |
8 |
|
|
|
4. Одна женщина отправилась в сад собрать яблоки. Чтобы выйти из сада, ей нужно было пройти 4 двери, у каждой из которых стоял стражник. Стражнику у первых дверей женщина отдала половину собранных ею яблок. Дойдя до второго стражника, женщина отдала ему половину оставшихся яблок. Так же она поступила и с третьим стражником; а когда она поделилась яблоками со стражником у четвертых дверей, то у нее осталось лишь 10 яблок. Сколько яблок она собрала в саду?
Решение:
Стандартное решение.
Ответ: 160 яблок, женщина собрала в саду.
Решение с конца.
1) 10 яблок – это половина того, что осталось перед 4-ой дверью, , значит, 20 яблок осталось перед четвертыми дверями.
2) 20 яблок – это половина того что осталось перед 3-ей дверью, , значит, 40 яблок осталось перед третьими дверями.
3) 40 яблок – это половина того что осталось перед 2-ой дверью, , значит, 80 яблок осталось перед второй дверью.
4) 80 яблок – это половина того что осталось перед 1-ой дверью, , значит, 160 яблок было перед первой дверью.
5. Чешская задача
По преданию, основательница чешского государства принцесса Либуша обещала отдать свою руку тому, кто сумеет решить задачу: «Если бы я дала первому жениху половину слив из этой корзины и еще одну сливу, второму жениху половину оставшихся слив и еще одну сливу, а оставшиеся сливы поделила пополам и половину их и еще три сливы дала бы третьему жениху, то корзина опустела бы». Сколько слив в корзине?
Решение:
Стандартное решение.
Пусть первоначально в корзине было x слив. Первый жених получил бы слив
Второй
Третий
Другие рефераты на тему «Педагогика»:
- Традиционные технические средства обучения в семейном воспитании
- Порождение устно-речевого высказывания на основе учебного текста на среднем этапе средней школы
- Работа с одаренными детьми
- Теоретические основы развития коммуникативных навыков в процессе изучения английского языка
- Профессиональная культура преподавателя высшей школы и условия ее реализации
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения