Применение занимательного задачного материала для активизации познавательной деятельности учащихся при обучении решению текстовых задач
Цель переформулировки — опустить несущественные детали, уточнить и раскрыть смысл существенных элементов.
Рассмотрим на примере простой задачи: «Утром в магазине было 30 книжных шкафов. К концу рабочего дня осталось 12 шкафов. Сколько шкафов продали за день?» — удобнее искать, если текст ее будет сформулирован так: «Было 30 шкафов. Осталось 12 шкафов. Сколько шкафов продали?»
4. Очень в
ажно при работе над задачей научить учащихся выделять основные (опорные) слова, которые связаны с действием, соответствующим сюжету.
2. Поиск пути решения задачи и составление плана ее решения
Цель ученика на втором этапе — выделить величины, данные и искомые числа, входящие в задачу, установить связи между данными и искомым и на этой основе выбрать соответствующее действие.
Использование различных методических приемов при обучении решению текстовых задач способствует развитию кругозора учащихся, правильному пониманию математического смысла различных жизненных ситуаций, активизирует их познавательную активность. На данном этапе используются различные способы моделирования.
Рассматривается, например, задача: «У Лены было 6 карандашей, а у Тани 4 карандаша. Сколько карандашей у обеих девочек?» К доске выходят две девочки. У одной из них в руке 6 карандашей, у другой — 4 карандаша. Такое воспроизведение уточняет представления детей, возникшие при восприятии ими задачи.
2. Графические модели (это рисунки и чертежи, которые помогают понять задачу, организовать поиск ее решения).
Рисунок может быть таким, что по нему, не выполняя арифметического действия, легко дать ответ на поставленный в задаче вопрос, например: Задача Л. Эйлера «Крестьянка принесла на рынок некоторое число яиц. Первому покупателю она продала половину того, что имела, и еще пол-яйца; второму – половину того, что у нее осталось, и еще пол-яйца; третьему – половину нового остатка и еще пол-яйца; четвертому – половину того, что осталось, и еще пол-яйца. После этого у нее ничего не осталось. Сколько яиц было у нее вначале?»
Решение:
Что было у крестьянки перед встречей с четвертым покупателем? Что-то, половина чего была продана, после чего осталось пол-яйца. Но, значит, пол-яйца были второй половиной того, что у нее было. Значит, перед встречей с четвертым покупателем у крестьянки было одно яйцо. Нарисуем его в виде одной клетки. Перед встречей с третьим покупателем у нее было это яйцо и те пол-яйца, которые она продала третьему, и все это составляло половину того, что она имела. Значит, пририсуем пол-яйца и удвоим полученное – эти три яйца были у крестьянки перед встречей с третьим покупателем. Аналогично, пририсовав к трем яйцам пол-яйца и удвоив полученное, будем иметь семь яиц, имевшиеся у нее перед встречей со вторым покупателем. Проделав еще раз эту операцию, узнаем, сколько было у нее яиц в самом начале.
текстовый задача математика познавательный
Ответ: 15 яиц.
Заметим, что полученный ответ следует проверить: 1-му покупателю продано 152 + 0,5 = 8 яиц, после чего осталось 7 яиц, 2-му покупателю продано 72 + 0,5 = 4 яйца, после чего осталось 3 яйца, 3-му покупателю продано 32 + 0,5 = 2 яйца, после чего осталось 1 яйцо, 4-му покупателю продано 12 + 0,5 = 1 яйцо, после чего не осталось ничего.
3. Схематическая модель — это краткая запись задачи (в методической литературе рассматриваются различные виды краткой записи). Например: «Средний из трех братьев старше младшего на два года, а возраст старшего брата превышает сумму лет двух остальных братьев четырьмя годами. Найти возраст каждого брата, если вместе им 96 лет»
Схематическая запись: Первому брату x – лет, второму 2+x, а третьему x+2+x+4
3. Осуществление плана решения задачи
Выбрав какой-нибудь метод решения, учащиеся переходят к его выполнению, т. е. к третьему этапу решения задачи.
Выполнение плана решения задачи представляется учеником устно или письменно (целиком или фрагментарно). Иногда выполняемые записи или построения сопровождаются устным комментарием.
4. проверка решения задачи
Способов проверки решения задачи много:
· Самый элементарный – прикидка ответа (установление границ искомого числа). Прикидка позволяет заметить неправильность рассуждения, несоответствие между величинами, но для многих задач она не применима.
· Самый полезный, универсальный – составление и решение обратной задачи. Этот способ проверки развивает мышление, способность рассуждать, но является громоздким и отнимает много времени.
· Самый надежный способ проверки – решение задачи другим способом. Во второй главе приведено множество задач, решенных двумя способами.
6. Дополнительная работа над решенной задачей.
Эффективным средством формирования творческой активности и мышления учащихся, дающим возможность более полно реализовать обучающие, развивающие и воспитывающие функции задач, является дополнительная работа над уже решенной задачей:
· изменение условия задачи;
· постановка нового вопроса;
· сравнение содержания данной задачи и ее решения с содержанием и решением другой задачи;
· анализ выполненного решения;
· обоснование правильности решения;
· составление задач по аналогии.
Таким образом, практическая ценность обучения школьников решению текстовых задач разнообразными методами в современных условиях заключается совсем не в том, что это обучение раз и навсегда вооружит их примерами решения различных задач, возникающих на практике и в дальнейшем обучении, а в том, что оно обогатит их опыт мыслительной деятельности. Использование на уроках математики старинных занимательных задач способствует развитию мышления и речи, развитию сообразительности и памяти.
Активизация познавательной деятельности учащегося. Познавательный интерес
Обучение – самый важный и надежный способ получения систематического образования. Оно отражает все существенные свойства педагогического процесса (двусторонность, направленность на всестороннее развитие личности, единство содержательной и процессуальной сторон).
Будучи сложным и многогранным, специально организуемым процессом отражения в сознании учащегося реальной действительности, обучение есть не что иное, как специфический процесс познания, управляемый педагогом. Именно направляющая роль учителя обеспечивает полноценное усвоение учащимися знаний, умений и навыков, развитие их умственных сил и творческих способностей.
Проблема активизации познавательной деятельности учащихся одна из актуальных задач педагогики.
Познавательная деятельность – это единство чувственного восприятия, теоретического мышления и практической деятельности. Она осуществляется на каждом жизненном шагу, во всех видах деятельности и социальных взаимоотношений учащихся (производительный и общественно полезный труд, ценностно-ориентационная и художественно-эстетическая деятельность, общение), а также путем выполнения различных предметно-практических действий в учебном процессе (экспериментирование, конструирование, решение исследовательских задач и т.п.). Но только в процессе обучения познание приобретает четкое оформление в особой, присущей только человеку учебно-познавательной деятельности или учении.
Другие рефераты на тему «Педагогика»:
- Инновационные процессы в преподавании и изучении иностранного языка на современном этапе развития отечественной системы образования
- Организация разнообразных видов деятельности как условие развития, обучения и воспитания дошкольников
- Географические координаты
- Клинико-педагогическая классификация нарушения речи
- Роль деятельности и общения в воспитании младших школьников
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения