Математическое развитие ребенка в системе дошкольного и начального школьного образования

В пункте 5.1. «Развитие конструктивного мышления дошкольника как основа его математического развития» приводится обоснование необходимости развития конструктивного мышления дошкольника как основы его математического развития. Тесная взаимосвязь между конструктивным и пространственным мышлением позволяет обоснованно высказать предположение о том, что в дошкольном возрасте развитие конструктивног

о мышления есть способ и средство стимуляции и развития пространственного мышления, которое, в свою очередь, является неотъемлемой составляющей математического стиля мышления. Под конструированием будем понимать вещественное моделирование различных объектов, понятий и отношений. Под обучением конструированию имеется в виду формирование общих конструктивных умений и развитие на этой базе конструктивного стиля мышления. Цель обучения конструированию – научить первичным приемам моделирования на самом простом наглядно-действенном уровне, т. е. уровне, соответствующем наглядно-действенному мышлению детей 3-5 лет и образному мышлению детей 6-10 лет.

При таком подходе к процессу формирования пространственного мышления дошкольника появляется возможность формировать базу первоначальных образов понятий (образов памяти) и образов способов действий (образов операций) через доступную ребенку деятельность конструирования с вещественными моделями. Процесс интериоризации этой деятельности как в виде отдельных операций, так и общих способов действий будет способствовать накоплению запаса образов, стимулирующих развитие пространственного мышления ребенка.

Рассматривая конструирование как частный, специфический вид такого общего способа деятельности с математическими понятиями и отношениями, как моделирование, предполагается выстроить формирование конструктивных умений у ребенка в процессе моделирования изучаемых математических понятий и отношений. С другой стороны, возможность воплощения изучаемого понятия или отношения в вещественной модели (макете, конструкции) позволяет сформировать у ребенка адекватное представление об абстрактном объекте на наглядно-действенном уровне и наглядно-образном уровне, что является наиболее соответствующим его возможностям и потребностям. При реализации конструктивного подхода к математическому развитию дошкольников необходимо привести конструктивную деятельность ребенка в соответствие с требованиями к построению учебных моделей понятий и этапами формирования умственных действий. Наиболее удобным математическим содержанием для реализации данной задачи является материал геометрического характера. Этот материал позволяет построение двухэтапного использования конструктивной деятельности ребенка с геометрическими образами (вещественного и графического).

В пункте 5.2. «Система логико-конструктивных заданий на математическом содержании как основа организации деятельности на математическом занятии при работе с детьми дошкольного возраста» рассмотрена методика построения системы логико-конструктивных заданий на математическом содержании как основы организации деятельности на математическом занятии при работе с детьми дошкольного возраста. Показано, что средством организации математического развития дошкольников является система логико-конструктивных заданий на математическом содержании. Суть методики, состоит в том, чтобы через систему специальных заданий и упражнений организовать ситуацию, позволяющую формировать и развивать у ребенка именно логические структуры в процессе знакомства с математическим содержанием. Сочетание такой работы с системой заданий, активно развивающих мелкую моторику, т. е. заданий логико-конструктивного характера, является фактором, активно влияющим на математическое развитие дошкольника.

В пункте 5.3. «Организация математического развития младших школьников» рассматривается методическое обеспечение математического развития младших школьников на примере использования геометрического материала. Решение проблемы организации деятельности учащихся начальных классов в процессе изучения математических объектов видится в разработке системы учебных заданий логико-конструктивного характера, включающих оперирование знаниями для всех этапов обучения в начальной школе (четыре года обучения).

Основным методом, используемым в процессе математического развития младших школьников при формировании геометрических представлений должна являться собственная моделирующая деятельность ребенка с адекватными (целесообразными) моделями изучаемых понятий и отношений. Сама же деятельность ребенка направлена на формирование пространственного мышления посредством моделирования пространственных отношений различных типов. Такая организация деятельности способствует общему математическому развитию ребенка, включающему развитие образного и абстрактно-логического мышления.

В шестой главе: «Организация и результаты экспериментального обучения» содержатся описание и анализ экспериментальной апробации предлагаемой технологии в детском саду и в начальной школе, а также некоторые итоги внедрения результатов данного исследования в процесс повышения квалификации педагогов ДОУ и средней школы и в процесс обучения студентов педагогических специальностей. За прошедший период (1990 – 2003 г.) был накоплен значительный опыт организации математического развития дошкольников и младших школьников. Сравнивать результаты обучения математике в ДОУ в экспериментальных и контрольных группах и в экспериментальных и контрольных классах в начальной школе при применении предлагаемой технологии в различных традиционных и альтернативных вариантах затруднительно, так как требования и критерии могут быть сопоставимы либо на уровне «знаниевого» подхода, либо на уровне качественного описания результатов экспериментального обучения.

Для определения эффективности разработанной методической системы мы применяли сравнение успеваемости учащихся экспериментальных и контрольных классов. Немаловажной была для нас и экспертная оценка учителей начальной школы, которые отмечают возросший интерес к изучению математики учащихся, занимающихся по разработанным материалам, а также повышение качества их знаний, особенно обобщенности и осознанности. Еще более значимыми мы полагали экспертные оценки учителей математики, принимающих экспериментальные классы: многие из них отмечали значительное отличие в уровне математического развития в экспериментальных классах. Большее количество расположенных к математике и хорошо успевающих в ней детей в этих классах отмечалось на протяжении всех лет эксперимента. При этом ни о каком предварительном отборе детей в эти классы речи не шло.

Из числа школ случайным образом были выбраны несколько из тех, которые участвовали в экспериментальном обучении. В первую очередь нас интересовали интегрированные оценки знаний учащихся и их сравнение с оценками учащихся контрольных классов. Контрольные классы, которые не участвовали в экспериментальном обучении, были выбраны в тех же школах. Приведем некоторые результаты контрольных срезов в трех случайно выбранных экспериментальных и трех контрольных классах, из которых экспериментальные классы занимались по программе «Наглядная геометрия» в начальной школе (начальный уровень подготовленности детей во всех классах в 1 классе был практически одинаковым).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы