Развитие мышления на уроках математики
При таком подходе эту задачу могут решить учащиеся не только VIII, но и V класса.
Арифметический способ решения задач, когда шаблонный метод не легко приводит к результату, является, как свидетельствуют наши наблюдения, одним из лучших средств развития самостоятельного, творческого решения учащихся. С помощью специально подобранных задач, которые могут заинтересовать учащихся своей кажущейс
я простотой и тем, что их решение не сразу дается в руки, можно показать учащимся красоту, простоту и изящество логического рассуждения, приводящего к решению задачи. Иллюстрацией сказанного служит задача № 1287 из [5]. (Всадник и пешеход одновременно отправились из пункта А в пункт В. Всадник, прибыв в пункт В на 50 мин. раньше пешехода, возвратился обратно в А. На обратном пути он встретился с пешеходом в двух километрах от В. На весь путь всадник затратил 1 час 40 минут. Найдите расстояние от А до В и скорость всадника и пешехода.)
Рассматривая решение задач несколькими способами, учитель на уроке и во внеклассной работе должен ориентировать учащихся на поиски красивых, изящных решений. Тем самым учитель будет способствовать эстетическому воспитанию учащихся и повышению их математической культуры.
Решая с учащимися ту или иную задачу, учитель должен стремиться к достижению двух целей. Первая — помочь ученику решить именно данную задачу, научить его решать задачи, аналогичные рассматриваемой; вторая — так развить способности ученика, чтобы он мог в будущем решить любую задачу школьного курса самостоятельно. Эти две цели, безусловно, связаны между собой, так как, справившись с заданной достаточно трудной для него задачей, учащийся несколько развивает свои способности к решению задач вообще.
Поэтому, преследуя вторую цель, при решении задач несколькими способами мы обращали внимание учащихся не только на наиболее рациональный, красивый способ решения данной задачи, но и на те способы, которые широко применяются при решении других задач и в некоторых случаях оказываются единственными. Поясним сказанное примером.
При решении задачи “Что больше: или ?” ([5], № 1263) учащиеся, как правило, применяют наиболее естественный в данном случае способ решения — приведение дробей к общему знаменателю и сравнение их числителей.
Мы познакомили учащихся и с другими способами решения этой задачи, которые могли оказаться полезными при решении других задач.
Так, вычтя из обеих дробей по 0,1, мы получили дроби с одинаковыми числителями, которые сравним устно:
Так как > , то > .
Можно сравнить данные дроби и другим способом: умножив каждую из дробей на 10 и выделив единицу, будем иметь
Так как > , то первая из данных дробей больше второй.
Иногда бывает целесообразным решить задачу в общем виде, хотя, как правило, числовые данные призваны упрощать решение задачи.
Семиклассникам была предложена задача: “Докажите, что не существует целых коэффициентов a, b, c, d, таких, что значение многочлена ax3 + bx2 + cx + d равно 1 при х = 19 и равно 2 при х = 62” ([5], № 1273).
Наряду с решением этой задачи с помощью составления системы уравнений для заданных числовых значений было дано решение задачи в общем виде. Из системы
получали , откуда следовало, что для целых a, b, c, х1, х2, А, В выражение А – В всегда кратно х1 – х2. Подставив х1 = 62, х2 = 19, А = 2, В =1, получали, что А – В не делится на х1 – х2 (1 не делится на 43). Следовательно, утверждение задачи доказано.
Такой способ решения позволил нам (и ученикам) варьировать условие этой задачи, импровизировать на ее тему.
Например, было предложено учащимся заполнить недостающие данные в условиях следующих задач:
Докажите, что не существует целых коэффициентов a, b, c и d, таких, что значение многочлена ax3 + bx2 + cx + d равно 1 при х =… и равно 2 при х =… .
Докажите, что не существует целых коэффициентов a, b, c и d, таких, что значение многочлена ax3 + bx2 + cx + d равно … при х = 19 и равно … при х = 2.
Полезно также предложить учащимся составить и решить другие задачи на данную тему, основываясь на решении задачи в общем виде.
Заметим, что частое использование одного и того же метода при решении задач иногда приводит к привычке, которая становиться вредной. У решающего задачу вырабатывается склонность к так называемой психологической инерции. Поэтому, как бы ни казался учащимся простым найденный способ решения задачи, всегда полезно попытаться найти другой способ решения, который обогатит опыт решающего задачу. Кроме того, в некоторых случаях, получение того же результата другим способом служит лучшей проверкой правильности результата.
В заключение нами было проведено вторичное тестирование. Для проведения повторных испытаний использовался вариант методики альтернативный «рычаговому», предполагающий «открытие» условия равновесия ворота.
Результаты вторичного испытания отражены в таблице:
октябрь 1995 г. |
март 1996 г. | |||||||||||
в |
с |
н |
в |
с |
н | |||||||
экспериментальные классы |
18 |
35% |
26 |
50% |
8 |
15% |
28 |
54% |
22 |
42% |
2 |
3% |
контрольный класс |
10 |
36% |
14 |
50% |
4 |
14% |
11 |
39% |
14 |
50% |
3 |
11% |
Другие рефераты на тему «Педагогика»:
- Развитие самооценки младших школьников в процессе обучения
- Разнообразие и плюрализм образовательного пространства в условиях глобализации
- Организация и методика изучения подтемы "Способы прокладки кабеля"
- Результативно-оценочный этап в структуре обучающей деятельности учителя
- Специфика педагогического процесса
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения