Формирование вычислительной культуры учащихся 5-6 классов

4) Расположите дроби в порядке возрастания:

Прием второй «Сравнение путем рассуждений» (положительные и отрицательные числа)

При использовании такого приема сравнивают произведения чисел с нулем, с отрицательным числом, с положительным числом. Казалось бы, выполнение подобных упражнений полностью опирается на правило, ни о какой прикидке и речи не идет. Но, опять же находятся такие упра

жнения, которые отталкиваясь от правил, путем некоторых рассуждений, приводят нас фактически к необходимости выполнить их не вычисляя, а прикинув. Подобное задание встречается в учебнике Виленкина Н.Я и др. Этот пример будет подробнее разобран во второй главе моего диплома в одном из фрагментов урока.

Перед тем как сравнивать, нужно разобрать сравнение произведений с нулем в следующем виде:

· а – положительное число, b – отрицательное, сравните с нулем произведение аb.

Опираясь на правило умножения чисел с разными знаками, замечаем, что произведение положительного числа на отрицательное дает нам отрицательное число, а отрицательное число всегда меньше нуля. Следовательно, ab<0.

· а – отрицательное, b – отрицательное, сравните с нулем произведение ab.

Опираясь на правило умножение отрицательных чисел, замечаем, что произведение отрицательного числа на отрицательное дает нам положительное число, а положительное число всегда больше нуля. Следовательно, ab>0.

После выполнения такого задания рассматриваем сравнение в нулем конкретных произведений, уже не в общем виде:

· Поставьте вместо * знак < или > так, чтобы получилось верное равенство:

а) ; в) ; д) ;

б) ; г) ; е) ;

Учитель предлагает выполнить это упражнение, не вычисляя. При выполнении пунктов а), б), д) полностью полагаемся на только что разобранные в общем виде случаи сравнения с нулем:

а) произведение отрицательного и положительного чисел дает нам отрицательное число, которое всегда меньше нуля;

б) произведение двух отрицательных чисел дает нам положительное число, которое всегда больше нуля;

д) аналогично, как и в пункте а), не смотря на то, что умножаем на дробь;

В пунктах в), г) и е) уже сравниваем с числом, но если в пункте в) такое сравнение осуществить совсем просто, не выполняя вычислений, то в пунктах г) и е) рассуждения будут немного сложней:

в) произведение положительного и отрицательного чисел дает нам отрицательное число, которое всегда меньше любого положительного;

г) Заметив, что в правой части произведение дает нам отрицательное число, знак все равно еще не можем поставить, т. к. в правой части тоже отрицательное число. Но есть одна особенность – сравним правую и левую часть, что общего можно отметить? «-8» есть и в правой, и в левой частях. Но, если в левой части оно взято всего один раз, то в правой целых 7,3 раза. Значит, на координатной прямой это число лежит левее числа -8. Поэтому .

е) Случай, казалось бы, аналогичен пункту г) (проводятся аналогичные рассуждения), но особенность заключается в умножении дробей. Необходимо вспомнить, что при умножении двух обыкновенных дробей мы получаем дробь, меньшую каждого из множителей (можно включить умножение дробей в устный счет в начале урока, чтобы затем освежить в памяти эти сведения). Поэтому, дробь, полученная при умножении на будет меньше, чем или . Получаем .

Этот прием больше используется в младшей школе при умножении многозначных чисел на однозначное или двузначное, но задания легко изменить таким образом, чтобы появилась возможность продолжить работать с таким приемом и в 5–6 классах. Достаточно натуральные числа заменить десятичными дробями, отчего суть приема не изменится.

В основе этого приема лежит знание таблицы умножения и навыки устного счета, а также используется округление чисел.

Главное, догадаться, что произведение чисел, не вычисляя можно определить по последней цифре числа, либо оценив произведение, округлив каждое из чисел до целых.

Примеры:

1) Догадайся! Как, не вычисляя значений произведений, выбрать из чисел, записанных справа, правильные ответы:

20,78 · 7 648,4

19,76 · 4 79,04

81,05 · 8 273,49

39,07 · 7 145,46

Школьники сначала умножают числа, стоящие в разряде сотых

(20,78 Ч 7 =?, 8 Ч7 = 56, результат 145,46), что дает основание предположить, какое из чисел второго столбика является значением данного произведения. Для последних двух выражений, значение произведения которых оканчивается цифрой 9 (7 Ч 7 = 49 и 1Ч9=9), во втором столбике есть два числа, имеющие в разряде сотых 9, в этом случае в качестве «прикидки» можно использовать прием округления (до целых).

2) Найди ошибки, не производя вычислений, способом «прикидки»:

80,04 Ч 9 = 72,36

99,8 Ч 8 = 7988,4

45,67 Ч 8 = 365,42

8,352 Ч 7 = 58,464

234,5 Ч 3 = 703,4

Задания на прикидку в ЕГЭ и ГИА

Умение быстро и правильно оценить результат вычислений, затратив на это минимум времени и сил необходимо, чтобы выполнению более трудных заданий уделить больше внимания, делать их спокойно, а не в суматохе.

Поэтому уже 5–6 классах необходимо начать готовить школьников к возможности выполнения некоторых заданий практически устно, прикинув возможный результат и отбросив заведомо неверный или же округлив результат до целых. Это важно потому, что подобные задания присутствуют как в ГИА, так и в ЕГЭ.

Задания на прикидку и оценку в ГИА:

· Округление натуральных чисел и десятичных дробей:

Задание 1.В одной столовой ложке – 25 г. риса, а в один стакан входит 235 г. риса. Сколько целых ложек риса помещается в одном стакане?

Решение:

1 способ. В 10ложках содержится 10*25=250 г. риса. Это много для одного стакана. Если возьмем 9 ложек риса, то получим 9*25=225 г. риса, значит, в одном стакане помещается 9 целых ложек риса.

2 способ. В один стакан входит 235:25=9,4 ложек риса. Получается, что в один стакан входит 9 целых ложек риса.

· Прикидка и оценка результата вычислений

Задание 1. Оцените значение выражения 3х+2у, если 1 < x < 2, 3 < у < 4

A. (3,4) Б. (9,14) В. (6,10) Г. (4,8)

Решение:

Можно просто посчитать сумму при х=1, у=3 и х=2 и у=4. Понятно, что сумма будет больше 9, но меньше 14. Варианты А), В) и Г) отбрасываются автоматически, исходя из условия, сумма уже не может быть меньше 9.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы