Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса
Самостоятельная работа учащихся: найти энциклопедическую справку о Евклиде; найти 2 задачи Евклида и решить их; что называют "пифагоровыми тройками".
4. Закрепление пройденного материала.
4.1 Выполнение задания № 626 (в) (у доски):
в)
4.2 Выполнение задания № 627 (в) (с комментированием):
в) dth=543 height=49 src="images/referats/29013/image002.png">
4.3 Выполнение задания № 628 (в) (самостоятельно):
в)
4.4 Выполнение задания № 629 (в) (самостоятельно):
в)
Проверка: кто первым решит, записывает ответ на доску.
4.5 Выполнение задания № 634 (а, в) (дополнительно):
а)
в)
5. Д/з № 630 (в), № 631 (в), № 632 (в), № 633 (в).
6. Итог урока.
Анализ урока.
Тип урока - урок закрепления. Цели и задачи урока: повторить формулы сокращенного умножения; отрабатывать навыки рациональных вычислений; развивать математическую речь, активность, внимание, навыки самостоятельности; воспитывать аккуратность, интерес к предмету. Цели и задачи решены. На уроке использовался исторический экскурс о Евклиде. Историческая справка заинтересовала учащихся.
Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"
Тема: Тождества
Цели: - познакомить учащихся с тождествами;
отрабатывать навыки рациональных вычислений;
развивать математическую речь, активность, внимание, навыки
самостоятельности;
воспитывать аккуратность, интерес к предмету.
Оборудование: портрет Франсуа Виет де ла Биготье.
Ход урока:
1. Сообщение темы и целей урока.
2. Работа по теме урока.
Тождество - это равенство, верное при любых допустимых значениях, входящих в его состав переменных.
Исторический экскурс о Франсуа Виете.
Франсуа Виет де ла Биготье (1540-1603)
Франсуа Виет был юристом и советником у французских королей Генриха III и Генриха IV. Математикой он занимался "в свободное от работы время". Виет внес значительный вклад во все области современной ему математики, но особенно велики его заслуги в развитии алгебры: он был первым, кто начал употреблять алгебраическую символику. Впрочем, его символика не получила широкого распространения. Современная алгебраическая символика в основном ведет свое начало от "Рассуждения о методе" Р. Декарта (1637 г.). В одной из его первых книг "Математические таблицы", опубликованной в 1579 году в Париже, автор говорит о преимуществах десятичных дробей при вычислениях и сам широко их использует.
Франсуа Виет - выдающийся французский математик. Его называют "отцом алгебры". Каждому школьнику известно это имя по знаменитой теореме Виета. В сочинениях Виета подводится своеобразный итог математики эпохи Возрождения. Главным трудом его жизни было сочинение по новой алгебре "Введение в искусство анализа". Виет был первым европейским математиком, который решал числовые уравнения приближенным путем. Его научные открытия легли в основу развития новой науки - аналитической геометрии. Виету принадлежат разложения тригонометрических функций кратных дуг посредством последовательного применения формул для синуса и косинуса сумм двух углов. Труды Виета привели к тому, что алгебра сформировалась как наука о решении уравнений.
Самостоятельная работа учащихся: найти задачу Франсуа Виета и решить ее; что называют тригонометрическими функциями, аналитической геометрией.
4. Закрепление полученных знаний.
4.1 Выполнение № 707 (а, б) (у доски):
а) (да); б) (да).
4.2 Выполнение № 708 (а, б) (с комментированием):
а) является тожеством; б) является тожеством.
4.3 Выполнение № 709 (а, б) (самостоятельно):
а) является тождеством; б) является тождеством.
4.4 Выполнение № 710 (а, б) (с комментированием):
а) переместительный закон сложения;
б) сочетательный закон сложения.
4.5 Выполнение № 712 (а, б) (у доски):
а) б)
5. Д/з № 707-712 (в, г).
6. Итог урока.
Анализ урока.
Тип урока - урок изучения нового материала. Цели и задачи урока: - познакомить учащихся с тождествами; отрабатывать навыки рациональных вычислений; развивать математическую речь, активность, внимание, навыки самостоятельности; воспитывать аккуратность, интерес к предмету. Цели и задачи урока решены. На уроке использовался исторический экскурс о Франсуа Виете. В качестве дополнительного домашнего задания учащимся была предложена самостоятельная работа. Исторический материал заинтересовал учащихся.
Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"
Тема: Координатная плоскость
Цели: - повторить понятие координатной прямой, координаты точки, виды
числовых промежутков;
развивать математическую речь, активность, внимание, навыки
самостоятельности;
воспитывать аккуратность, интерес к предмету.
Оборудование: портрет Рене Декарта.
Ход урока:
1. Подготовка учащихся к восприятию нового материала (фронтальная работа с классом).
1.1 Что называют координатной прямой?
Координатной прямой называют прямую, на которой выбрано начало отсчета, единичный отрезок и указано направление.
1.2 Что называют координатой точки?
Число, определяющее положение точки на прямой, называется координатой точки.
1.3 Какие виды числовых промежутков вы знаете?
Числовые промежутки: луч, открытый луч, интервал, отрезок, полуинтервал.
2. Сообщение темы и целей урока.
3. Изучение нового материала.
Проведем 2 взаимно-перпендикулярные координатные прямые и будем считать началом отсчета на обеих прямых точку их пересечения - точку О. тем самым на плоскости задана прямоугольная система координат, которая превращает обычную плоскость в координатную.
Другие рефераты на тему «Педагогика»:
- Формирование оптико–пространственных представлений у младших школьников с оптической дисграфией
- Выявление несовершенства звукопроизношения у дошкольников с фонетико-фонематическим нарушением речи
- Использование дидактических игр в процессе ознакомления детей старшей группы с растениями
- Дифференцированный зачет как одна из форм определения качества знаний, умений и уровня развития учащихся
- Игрушка
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения